Manhattan-norm ball (Ball1)
LazySets.Ball1
— TypeBall1{N, VN<:AbstractVector{N}} <: AbstractCentrallySymmetricPolytope{N}
Type that represents a ball in the 1-norm (also known as the Manhattan norm). The ball is also known as a cross-polytope.
It is defined as the set
\[\mathcal{B}_1^n(c, r) = \{ x ∈ \mathbb{R}^n : ∑_{i=1}^n |c_i - x_i| ≤ r \},\]
where $c ∈ \mathbb{R}^n$ is its center and $r ∈ \mathbb{R}_+$ its radius.
Fields
center
– center of the ball as a real vectorradius
– radius of the ball as a scalar ($≥ 0$)
Examples
The unit ball in the 1-norm in the plane:
julia> B = Ball1(zeros(2), 1.0)
Ball1{Float64, Vector{Float64}}([0.0, 0.0], 1.0)
julia> dim(B)
2
We evaluate the support vector in the North direction:
julia> σ([0.0, 1.0], B)
2-element Vector{Float64}:
0.0
1.0
LazySets.σ
— Methodσ(d::AbstractVector, B::Ball1)
Return the support vector of a ball in the 1-norm in the given direction.
Input
d
– directionB
– ball in the 1-norm
Output
The support vector in the given direction.
Base.:∈
— Function∈(x::AbstractVector, B::Ball1, [failfast]::Bool=false)
Check whether a given point is contained in a ball in the 1-norm.
Input
x
– point/vectorB
– ball in the 1-normfailfast
– (optional, default:false
) optimization for negative answer
Output
true
iff $x ∈ B$.
Notes
The default behavior (failfast == false
) is worst-case optimized, i.e., the implementation is optimistic and first computes (see below) the whole sum before comparing to the radius. In applications where the point is typically far away from the ball, the option failfast == true
terminates faster.
Algorithm
Let $B$ be an $n$-dimensional ball in the 1-norm with radius $r$ and let $c_i$ and $x_i$ be the ball's center and the vector $x$ in dimension $i$, respectively. Then $x ∈ B$ iff $∑_{i=1}^n |c_i - x_i| ≤ r$.
Examples
julia> B = Ball1([1.0, 1.0], 1.0);
julia> [0.5, -0.5] ∈ B
false
julia> [0.5, 1.5] ∈ B
true
LazySets.vertices_list
— Methodvertices_list(B::Ball1)
Return the list of vertices of a ball in the 1-norm.
Input
B
– ball in the 1-norm
Output
A list containing the vertices of the ball in the 1-norm.
Notes
In $n$ dimensions there are $2n$ vertices (unless the radius is 0).
LazySets.center
— Methodcenter(B::Ball1)
Return the center of a ball in the 1-norm.
Input
B
– ball in the 1-norm
Output
The center of the ball in the 1-norm.
Base.rand
— Methodrand(::Type{Ball1}; [N]::Type{<:Real}=Float64, [dim]::Int=2,
[rng]::AbstractRNG=GLOBAL_RNG, [seed]::Union{Int, Nothing}=nothing
)
Create a random ball in the 1-norm.
Input
Ball1
– type for dispatchN
– (optional, default:Float64
) numeric typedim
– (optional, default: 2) dimensionrng
– (optional, default:GLOBAL_RNG
) random number generatorseed
– (optional, default:nothing
) seed for reseeding
Output
A random ball in the 1-norm.
Algorithm
All numbers are normally distributed with mean 0 and standard deviation 1. Additionally, the radius is nonnegative.
LazySets.constraints_list
— Methodconstraints_list(P::Ball1)
Return the list of constraints of a ball in the 1-norm.
Input
B
– ball in the 1-norm
Output
The list of constraints of the ball.
Notes
In $n$ dimensions there are $2^n$ constraints (unless the radius is 0).
Algorithm
The constraints can be defined as $d_i^T (x-c) ≤ r$ for all $d_i$, where $d_i$ is a vector with elements $1$ or $-1$ in $n$ dimensions. To span all possible $d_i$, the function Iterators.product
is used.
LazySets.translate
— Methodtranslate(B::Ball1, v::AbstractVector)
Translate (i.e., shift) a ball in the 1-norm by the given vector.
Input
B
– ball in the 1-normv
– translation vector
Output
The translated ball in the 1-norm.
Notes
See also translate!(::Ball1, ::AbstractVector)
for the in-place version.
LazySets.translate!
— Methodtranslate!(B::Ball1, v::AbstractVector)
Translate (i.e., shift) a ball in the 1-norm by the given vector, in-place.
Input
B
– ball in the 1-normv
– translation vector
Output
The in-place translated ball in the 1-norm.
Algorithm
We add the vector to the center of the ball.
Notes
See also translate(::Ball1, ::AbstractVector)
for the out-of-place version.
Inherited from LazySet
:
Inherited from AbstractPolyhedron
:
Inherited from AbstractPolytope
:
Inherited from AbstractCentrallySymmetricPolytope
: