Sparse polynomial zonotope sets (AbstractSparsePolynomialZonotope)
LazySets.AbstractSparsePolynomialZonotope
— TypeAbstractSparsePolynomialZonotope{N} <: AbstractPolynomialZonotope{N}
Abstract type for sparse polynomial zonotope sets.
Notes
See SparsePolynomialZonotope
for a standard implementation of this interface.
Every concrete AbstractSparsePolynomialZonotope
must define the following functions:
expmat(::AbstractSparsePolynomialZonotope)
– return the exponent matrix (sparse PZ only)genmat_dep(::AbstractSparsePolynomialZonotope)
– return the matrix of dependent generatorsgenmat_indep(::AbstractSparsePolynomialZonotope)
– return the matrix of independent generators
The subtypes of AbstractSparsePolynomialZonotope
(including abstract interfaces):
julia> subtypes(AbstractSparsePolynomialZonotope)
2-element Vector{Any}:
SimpleSparsePolynomialZonotope
SparsePolynomialZonotope
This interface requires to implement the following functions:
LazySets.expmat
— Methodexpmat(P::AbstractSparsePolynomialZonotope)
Return the matrix of exponents of a sparse polynomial zonotope.
Input
P
– sparse polynomial zonotope
Output
The matrix of exponents, where each column is a multidegree.
Notes
In the exponent matrix, each row corresponds to a parameter ($αₖ$ in the definition) and each column corresponds to a monomial.
LazySets.genmat_dep
— Methodgenmat_dep(P::AbstractSparsePolynomialZonotope)
Return the matrix of dependent generators of a sparse polynomial zonotope.
Input
P
– sparse polynomial zonotope
Output
The matrix of dependent generators.
LazySets.genmat_indep
— Methodgenmat_indep(P::AbstractSparsePolynomialZonotope)
Return the matrix of independent generators of a sparse polynomial zonotope.
Input
P
– sparse polynomial zonotope
Output
The matrix of independent generators.
This interface defines the following functions:
LazySets.nparams
— Methodnparams(P::AbstractSparsePolynomialZonotope)
Return the number of dependent parameters in the polynomial representation of a sparse polynomial zonotope.
Input
P
– sparse polynomial zonotope
Output
The number of dependent parameters in the polynomial representation.
Notes
This number corresponds to the number of rows in the exponent matrix.
LazySets.API.ρ
— Methodρ(d::AbstractVector, P::AbstractSparsePolynomialZonotope; [enclosure_method]=nothing)
Bound the support function of $P$ in the direction $d$.
Input
d
– directionP
– sparse polynomial zonotopeenclosure_method
– (optional; default:nothing
) method to use for enclosure; anAbstractEnclosureAlgorithm
from theRangeenclosures.jl
package
Output
An overapproximation of the support function in the given direction.
Algorithm
This method implements Kochdumper [Koc22], Proposition 3.1.16.
LazySets.API.linear_combination
— Methodlinear_combination(X::LazySet, Y::LazySet)
Compute the linear combination of two sets.
Input
X
– setY
– set
Output
A set representing the linear combination of X
and Y
.
Notes
The linear combination of two sets $X$ and $Y$ is defined as
\[ \left\{\frac{1}{2}(1+λ)x + \frac{1}{2}(1-λ)y \mid x ∈ X, y ∈ Y, λ ∈ [-1, 1]\right\}.\]
If $X$ and $Y$ are convex, their linear combination is identical with the convex hull of their union $X ∪ Y$.
LazySets.API.linear_combination
— MethodExtended help
linear_combination(P1::AbstractSparsePolynomialZonotope,
P2::AbstractSparsePolynomialZonotope)
Algorithm
This method implements Kochdumper [Koc22], Proposition 3.1.25.
Output
A SimpleSparsePolynomialZonotope
.
Undocumented implementations:
Inherited from LazySet
:
an_element
area
chebyshev_center_radius
complement
concretize
constraints
convex_hull
copy(::Type{LazySet})
diameter
eltype
eltype
extrema
extrema
high
high
isbounded
isoperation
ispolyhedral
low
low
norm
polyhedron
radius
rationalize
rectify
reflect
singleton_list
tosimplehrep
translate
translate!
triangulate
triangulate_faces
vertices
affine_map
exponential_map
is_interior_point
project
sample
scale
cartesian_product
convex_hull
exact_sum
≈
isdisjoint
==
isequivalent
⊂
⊆
minkowski_difference
minkowski_sum
Inherited from AbstractPolynomialZonotope
: