Conversion between set representations
This section of the manual lists the conversion functions between set representations.
Base.convert — Method.convert(::Type{HPOLYGON1},
P::HPOLYGON2) where {HPOLYGON1<:AbstractHPolygon,
HPOLYGON2<:AbstractHPolygon}Convert between polygon types in H-representation.
Input
type– target typeP– source polygon
Output
The polygon represented as the target type.
Notes
We need the Union type for HPOLYGON1 because the target type must be concrete.
Base.convert — Method.convert(T::Type{HPOLYGON}, P::VPolygon) where {HPOLYGON<:AbstractHPolygon}Converts a polygon in vertex representation to a polygon in constraint representation.
Input
HPOLYGON– type used for dispatchP– polygon in vertex representation
Output
A polygon in constraint representation.
Base.convert — Method.convert(::Type{Hyperrectangle}, x::Interval)Converts a unidimensional interval into a hyperrectangular set.
Input
AbstractHyperrectanglex– interval
Output
A hyperrectangle.
Examples
julia> convert(Hyperrectangle, Interval(0.0, 1.0))
Hyperrectangle{Float64}([0.5], [0.5])Base.convert — Method.convert(::Type{HPOLYGON}, H::AbstractHyperrectangle) where
{HPOLYGON<:AbstractHPolygon}Converts a hyperrectangular set to a polygon in constraint representation.
Input
HPOLYGON– type used for dispatchH– hyperrectangular set
Output
A polygon in constraint representation.
Base.convert — Method.convert(::Type{HPOLYGON}, P::HPolytope{N}) where
{N<:Real, HPOLYGON<:AbstractHPolygon}Convert from 2D polytope in H-representation to polygon in H-representation.
Input
type– target typeP– source polytope (must be 2D)
Output
The 2D polytope represented as polygon.
Base.convert — Method.convert(::Type{HPOLYGON}, S::AbstractSingleton{N}
) where {N<:Real, HPOLYGON<:AbstractHPolygon}Convert from singleton to polygon in H-representation.
Input
type– target typeS– singleton
Output
A polygon in constraint representation with the minimal number of constraints (three).
Base.convert — Method.convert(::Type{HPOLYGON}, L::LineSegment{N}
) where {N<:Real, HPOLYGON<:AbstractHPolygon}Convert from line segment to polygon in H-representation.
Input
type– target typeL– line segment
Output
A flat polygon in constraint representation with the minimal number of constraints (four).
Base.convert — Method.convert(::Type{HPolyhedron}, P::AbstractPolytope)Convert a polytopic set to a polyhedron in H-representation.
Input
type– target typeP– source polytope
Output
The given polytope represented as a polyhedron in constraint representation.
Base.convert — Method.convert(::Type{HPolytope}, P::AbstractHPolygon)Convert from polygon in H-representation to polytope in H-representation.
Input
type– target typeP– source polygon
Output
The polygon represented as 2D polytope.
Base.convert — Method.convert(::Type{HPolytope}, H::AbstractHyperrectangle)Converts a hyperrectangular set to a polytope in constraint representation.
Input
HPolytope– type used for dispatchH– hyperrectangular set
Output
A polytope in constraint representation.
Base.convert — Method.convert(::Type{HPolytope}, P::AbstractPolytope)Convert a polytopic set to a polytope in H-representation.
Input
type– target typeP– source polytope
Output
The given polytope represented as a polytope in constraint representation.
Algorithm
$P$ is first converted to a polytope in V-representation. Then, the conversion method to a polytope in H-representation is invoked. This conversion may require the Polyhedra library.
Base.convert — Method.convert(::Type{HPolytope}, P::VPolytope)Convert from polytope in V-representation to polytope in H-representation.
Input
type– target typeP– source polytope
Output
The polytope in the dual representation.
Algorithm
The tohrep function is invoked. It requires the Polyhedra package.
Base.convert — Method.convert(::Type{VPolygon}, P::AbstractHPolygon)Converts a polygon in constraint representation to a polygon in vertex representation.
Input
VPolygon– type used for dispatchP– polygon in constraint representation
Output
A polygon in vertex representation.
Base.convert — Method.convert(::Type{VPolygon}, P::AbstractPolytope)Convert polytopic set to polygon in V-representation.
Input
type– target typeP– source polytope
Output
The 2D polytope represented as a polygon.
Base.convert — Method.convert(::Type{VPolytope}, P::AbstractPolytope)Convert polytopic type to polytope in V-representation.
Input
type– target typeP– source polytope
Output
The set P represented as a VPolytope.
Base.convert — Method.convert(::Type{VPolytope}, P::HPolytope)Convert from polytope in H-representation to polytope in V-representation.
Input
type– target typeP– source polytope
Output
The polytope in the dual representation.
Algorithm
The tovrep function is invoked. It requires the Polyhedra package.
Base.convert — Method.convert(::Type{Zonotope}, H::AbstractHyperrectangle)Converts a hyperrectangular set to a zonotope.
Input
ZonotopeH– hyperrectangular set
Output
A zonotope.