Methods
This section describes systems methods implemented in PolynomialZonotopes.jl.
Properties
PolynomialZonotopes.dim — Method.dim(pz::PolynomialZonotope)::IntReturn the ambient dimension of a polynomial zonotope.
Input
pz– polynomial zonotope
Output
An integer representing the ambient dimension of the polynomial zonotope.
PolynomialZonotopes.σ — Method.σ(d::AbstractVector{N}, pz::PolynomialZonotope{N})::AbstractVector{N} where {N}Return the support vector of a polynomial zonotope along direction d.
Input
d– directionpz– polynomial zonotope
Output
Vector representing the support vector.
PolynomialZonotopes.polynomial_order — Method.polynomial_order(pz::PolynomialZonotope)::IntPolynomial order of a polynomial zonotope.
Input
pz– polynomial zonotope
Output
The polynomial order, defined as the maximal power of the scale factors $β_i$. Usually denoted $η$.
PolynomialZonotopes.order — Method.order(pz::PolynomialZonotope)::Rational{Int}Order of a polynomial zonotope.
Input
pz– polynomial zonotope
Output
The order, defined as the number of generators divided by the ambient dimension.
Operations
PolynomialZonotopes.linear_map — Method.linear_map(M::Matrix, pz::PolynomialZonotope)Return the linear map of a polynomial zonotope.
Input
M– matrixpz– polynomial zonotope
Output
Polynomial zonotope such that its starting point and generators are those of pz multiplied by the matrix M.
PolynomialZonotopes.scale — Method.scale(α::Number, pz::PolynomialZonotope)Return a polynomial zonotope modified by a scale factor.
Input
α– polynomial zonotopepz– polynomial zonotope
Output
Polynomial zonotope such that its center and generators are multiples of those of pz by a factor $α$.
PolynomialZonotopes.minkowski_sum — Method.minkowski_sum(pz::PolynomialZonotope, z::Zonotope)Return the Minkowski sum of a polynomial zonotope and a usual zonotope.
Input
pz– polynomial zonotopez– usual zonotope
Output
Polynomial zonotope.