ReachabilityAnalysis.GLGM06
— TypeGLGM06{N, AM, S, D, NG, P, RM} <: AbstractContinuousPost
Implementation of the Girard–Le Guernic–Maler algorithm for reachability of linear systems using zonotopes.
Fields
δ
– step-size of the discretizationapprox_model
– (optional, default:FirstOrderZonotope()
) approximation model; seeNotes
below for possible optionsmax_order
– (optional, default:5
) maximum zonotope orderstatic
– (optional, default:false
) iftrue
, convert the problem data to statically sized arraysdim
– (optional default:missing
) ambient dimensionngens
– (optional, default:missing
) number of generatorspreallocate
– (optional, default:true
) iftrue
, use the implementation which preallocates the zonotopes prior to applying the update rulereduction_method
– (optional, default:GIR05()
) zonotope order reduction method useddisjointness_method
– (optional, default:NoEnclosure()
) method to check disjointness between the reach-set and the invariant
Notes
The type parameters are:
N
– number type of the step-sizeAM
– approximation modelS
– value type of thestatic
optionD
– value type of the dimension of the systemdim
NG
– value type of the number of generatorsngens
P
– value type of thepreallocate
optionRM
– type of the reduction method
The only parameter that does not have a default value is the step size δ
, associated with the type parameter N
. Parameters dim
and ngens
are optionally specified (default to missing
). These parameters are needed for the cases that require the size of the zonotopes to be known (fixed) at compile time, namely the static=true
version of this algorithm.
The default approximation model is FirstOrderZonotope
.
References
The main ideas behind this algorithm can be found in [GIR05] and [GLGM06]. These methods are discussed at length in the dissertation [LG09].
Regarding the zonotope order reduction methods, we refer to [COMB03], [GIR05] and the review article [YS18].