CARLIN
ReachabilityAnalysis.CARLIN — TypeCARLIN <: AbstractContinuousPostImplementation of the reachability method using Carleman linearization from Forets and Schilling [FS21].
ReachabilityAnalysis.kron_pow — Functionkron_pow(x::IA.Interval, pow::Int)Given an interval x and an integer pow, compute x^pow.
Input
x– intervalpow– integer
Output
An interval enclosure of x^pow.
Examples
julia> [kron_pow(2 .. 3, i) for i in 1:3]
3-element Array{IntervalArithmetic.Interval{Float64},1}:
[2, 3]
[4, 9]
[8, 27]kron_pow(x::Interval, pow::Int)Given an interval x and an integer pow, compute x^pow.
Input
x– intervalpow– integer
Output
An interval enclosure of x^pow as a LazySets Interval.
kron_pow(H::AbstractHyperrectangle, pow::Int)Given hyperrectangular set H and an integer pow, compute the Kronecker power H^{⊗ pow}.
Input
H– hyperrectangular setpow– integer power
Output
A hyperrectangle.
Algorithm
We compute H^{⊗ pow} where H is a hyperrectangular set by working with H as a product of intervals.
See also kron_pow which requires DynamicPolynomials.jl.
kron_pow(x::Vector{<:AbstractVariable}, pow::Int)Compute the higher order concrete Kronecker power: x ⊗ x ⊗ ... ⊗ x, pow times for a vector of symbolic monomials.
Input
x– polynomial variablepow– integer
Output
Vector of multivariate monomial corresponding to x^{⊗ pow}.
Examples
julia> using DynamicPolynomials
julia> @polyvar x[1:2]
(PolyVar{true}[x₁, x₂],)
julia> x
2-element Array{PolyVar{true},1}:
x₁
x₂
julia> kron_pow(x, 2)
4-element Array{Monomial{true},1}:
x₁²
x₁x₂
x₁x₂
x₂²ReachabilityAnalysis.kron_pow_stack — Functionkron_pow_stack(x::IA.Interval, pow::Int)Return a hyperrectangle with the interval powers [x, x^2, …, x^pow].
Input
x– intervalpow– integer power
Output
A hyperrectangle such that the i-th dimension is the interval x^i.
kron_pow_stack(x::Interval, pow::Int)Return a hyperrectangle with the interval powers [x, x^2, …, x^pow].
Input
x– intervalpow– integer power
Output
A hyperrectangle such that the i-th dimension is the interval x^i.
kron_pow_stack(H::AbstractHyperrectangle, pow::Int)Return the Cartesian product array $H × H^{⊗2} × ⋯ × H^{⊗pow}$ where $H$ is a hyperrectangular set and $H^{⊗ i}$ is the i-th Kronecker power of $H$.
Input
H– hyperrectangular setpow– integer power
Output
A Cartesian product array of hyperrectangles.