ReachabilityAnalysis.ASB07 — TypeASB07{N, AM, RM, S, R} <: AbstractContinuousPostImplementation of Althoff - Stursberg - Buss algorithm for reachability of linear systems with uncertain parameters and inputs using zonotopes.
Fields
δ– step-size of the discretizationapprox_model– (optional, default:CorrectionHull(; order=10, exp=:interval)) approximation model; seeNotesbelow for possible optionsmax_order– (optional, default:5) maximum zonotope orderreduction_method– (optional, default:GIR05()) zonotope order reduction method usedstatic– (optional, default:false) iftrue, convert the problem data to statically sized arraysrecursive– (optional default:true) iftrue, use the implementation that recursively computes each reach-set; otherwise, use the implementation that unwraps the sequence until the initial set
Notes
The type fields are:
N– number type of the step-sizeAM– type of the approximation modelRM– type associated to the reduction methodS– value type associated to thestaticoptionR– value type associated to therecursiveoption
The sole parameter which doesn't have a default value is the step-size, associated to the type parameter N.
The default approximation model is
approx_model=CorrectionHull(order=10, exp=:base)Here, CorrectionHull refers to an implementation of the interval matrix approximation method described in Althoff et al. [ASB07]. For technicalities on interval matrix operations, we refer to the package IntervalMatrices.jl.
References
The main ideas behind this algorithm can be found in Althoff et al. [ASB07]. These methods are discussed at length in the dissertation [Alt10].
Regarding the zonotope order reduction methods, we refer to Combastel [Com03] and Girard [Gir05] and the review article [YS18].