Utility functions
Arrays module
LazySets.Arrays — Module.Module Arrays.jl – Auxiliary machinery for vectors and matrices.
LazySets.Arrays.cross_product — Method.cross_product(M::AbstractMatrix{N}) where {N<:Real}Compute the high-dimensional cross product of $n-1$ $n$-dimensional vectors.
Input
M– $n × n - 1$-dimensional matrix
Output
A vector.
Algorithm
The cross product is defined as follows:
where $M^{[i]}$ is defined as $M$ with the $i$-th row removed. See Althoff, Stursberg, Buss: Computing Reachable Sets of Hybrid Systems Using a Combination of Zonotopes and Polytopes. 2009.
LazySets.Arrays.delete_zero_columns! — Function.delete_zero_columns!(A::AbstractMatrix)Remove all columns that only contain zeros from a given matrix.
Input
A– matrixcopy– (optional, default:false) flag to copy the matrix
Output
A matrix.
If the input matrix A does not contain any zero column, we return A unless the option copy is set. If the input matrix contains zero columns, we always return a copy if the option copy is set and otherwise a SubArray via @view.
LazySets.Arrays.dot_zero — Function.dot_zero(x::AbstractVector{N}, y::AbstractVector{N}) where{N<:Real}Dot product with preference for zero value in the presence of infinity values.
Input
x– first vectory– second vector
Output
The dot product of x and y, but with the rule that 0 * Inf == 0.
LazySets.Arrays.hasfullrowrank — Function.hasfullrowrank(M::AbstractMatrix)Check whether a matrix has full row rank.
Input
M– matrix
Output
true iff the matrix has full row rank.
LazySets.Arrays.inner — Function.inner(x::AbstractVector{N}, A::AbstractMatrix{N}, y::AbstractVector{N}
) where {N}Compute the inner product $xᵀ A y$.
Input
x– vector on the leftA– matrixy– vector on the right
Output
The (scalar) result of the multiplication.
LazySets.Arrays.is_cyclic_permutation — Function.is_cyclic_permutation(candidate::AbstractVector, paragon::AbstractVector)Checks if the elements in candidate are a cyclic permutation of the elements in paragon.
Input
candidate– candidate vectorparagon– paragon vector
Output
A boolean indicating if the elements of candidate are in the same order as in paragon or any of its cyclic permutations.
LazySets.Arrays.isinvertible — Function.isinvertible(M::Matrix; [cond_tol]::Number=DEFAULT_COND_TOL)A sufficient check of a matrix being invertible (or nonsingular).
Input
M– matrixcond_tol– (optional, default:DEFAULT_COND_TOL) tolerance of matrix condition
Output
If the result is true, M is invertible. If the result is false, the matrix is non-square or this function could not conclude.
Algorithm
We check whether the matrix is square and whether the matrix condition number cond(M) is below some prescribed tolerance.
LazySets.ispermutation — Function.ispermutation(u::AbstractVector{T}, v::AbstractVector) where {T}Check that two vectors contain the same elements up to reordering.
Input
u– first vectorv– second vector
Output
true iff the vectors are identical up to reordering.
Examples
julia> LazySets.ispermutation([1, 2, 2], [2, 2, 1])
true
julia> LazySets.ispermutation([1, 2, 2], [1, 1, 2])
falseNotes
Containment check is performed using LazySets._in(e, v), so in the case of floating point numbers, the precision to which the check is made is determined by the type of elements in v. See _in and _isapprox for more information.
LazySets.Arrays.is_right_turn — Function.is_right_turn([O::AbstractVector{N}=[0, 0]], u::AbstractVector{N},
v::AbstractVector{N}) where {N<:Real}Determine whether the acute angle defined by three 2D points O, u, v in the plane is a right turn (< 180° counter-clockwise) with respect to the center O. Determine if the acute angle defined by two 2D vectors is a right turn (< 180° counter-clockwise) with respect to the center O.
Input
O– (optional; default:[0, 0]) 2D center pointu– first 2D directionv– second 2D direction
Output
true iff the vectors constitute a right turn.
LazySets.Arrays.issquare — Function.issquare(M::AbstractMatrix)Check whether a matrix is square.
Input
M– matrix
Output
true iff the matrix is square.
LazySets.Arrays.nonzero_indices — Function.nonzero_indices(v::AbstractVector{N}) where {N<:Real}Return the indices in which a vector is non-zero.
Input
v– vector
Output
A vector of ascending indices i such that the vector is non-zero in dimension i.
LazySets.Arrays.remove_duplicates_sorted! — Function.remove_duplicates_sorted!(v::AbstractVector)Remove duplicate entries in a sorted vector.
Input
v– sorted vector
Output
The input vector without duplicates.
LazySets.Arrays.right_turn — Function.right_turn([O::AbstractVector{N}=[0, 0]], u::AbstractVector{N},
v::AbstractVector{N}) where {N<:Real}Compute a scalar that determines whether the acute angle defined by three 2D points O, u, v in the plane is a right turn (< 180° counter-clockwise) with respect to the center O.
Input
O– (optional; default:[0, 0]) 2D center pointu– first 2D pointv– second 2D point
Output
A scalar representing the rotation. If the result is 0, the points are collinear; if it is positive, the points constitute a positive angle of rotation around O from u to v; otherwise they constitute a negative angle.
Algorithm
The cross product is used to determine the sense of rotation.
LazySets.Arrays.samedir — Function.samedir(u::AbstractVector{N}, v::AbstractVector{N}) where {N<:Real}Check whether two vectors point in the same direction.
Input
u– first vectorv– second vector
Output
(true, k) iff the vectors are identical up to a positive scaling factor k, and (false, 0) otherwise.
Examples
julia> using LazySets: samedir
julia> samedir([1, 2, 3], [2, 4, 6])
(true, 0.5)
julia> samedir([1, 2, 3], [3, 2, 1])
(false, 0)
julia> samedir([1, 2, 3], [-1, -2, -3])
(false, 0)
SingleEntryVector{N} <: AbstractVector{N}A lazy unit vector with arbitrary one-element.
Fields
i– index of non-zero entryn– vector lengthv– non-zero entry
LazySets.Arrays.to_negative_vector — Function.to_negative_vector(v::AbstractVector{N}) where {N}Negate a vector and convert to type Vector.
Input
v– vector
Output
A Vector equivalent to $-v$.
LazySets.Arrays._up — Function._up(u::AbstractVector, v::AbstractVector)Checks if the given vector is pointing towards the given direction.
Input
u– directionv– vector
Output
A boolean indicating if the vector is pointing towards the direction.
LazySets.Arrays._dr — Function._dr(u::AbstractVector, Vi::AbstractVector, Vj::AbstractVector)Returns the direction of the difference of the given vectors.
Input
u– directionVi– first vectorVj– second vector
Output
A number indicating the direction of the difference of the given vectors.
LazySets.Arrays._above — Function._above(u::AbstractVector, Vi::AbstractVector, Vj::AbstractVector)Checks if the difference of the given vectors is pointing towards the given direction.
Input
u– directionVi– first vectorVj– second vector
Output
A boolean indicating if the difference of the given vectors is pointing towards the given direction.
LazySets.minmax — Function.minmax(A, B, C)Compute the minimum and maximum of three numbers A, B, C.
Input
A– first numberB– second numberC– third number
Output
The minimum and maximum of three given numbers.
Examples
julia> LazySets.minmax(1.4, 52.4, -5.2)
(-5.2, 52.4)LazySets.arg_minmax — Function.arg_minmax(A, B, C)Compute the index (1, 2, 3) of the minimum and maximum of three numbers A, B, C.
Input
A– first numberB– second numberC– third number
Output
The index of the minimum and maximum of the three given numbers.
Examples
julia> LazySets.arg_minmax(1.4, 52.4, -5.2)
(3, 2)LazySets.Arrays.extend — Function.extend(M::AbstractMatrix; check_rank=true)Return an invertible extension of M whose first n columns span the column space of M, assuming that size(M) = (m, n), m > n and the rank of M is n.
Input
M– rectangularm × nmatrix withm > nand full rank (i.e. its rank isn)check_rank– (optional, default:true) iftrue, check the rank assumption, otherwise do not perform this check
Output
The tuple (Mext, inv_Mext), where Mext is a square m × m invertible matrix that extends M, i.e. in the sense that Mext = [M | Q2], and the rank of Mext is m. Here, inv_Mext is the inverse of Mext.
Algorithm
First we compute the QR decomposition of M to extract a suitable subspace of column vectors (Q2) that are orthogonal to the column span of M. Then we observe that the inverse of the extended matrix Mext = [M | Q2] is [R⁻¹Qᵀ; Q2ᵀ].
LazySets.Arrays.projection_matrix — Function.projection_matrix(block::AbstractVector{Int}, n::Int, [N]::DataType=Float64)Return the projection matrix associated to the given block of variables.
Input
block– integer vector with the variables of interestn– integer representing the ambient dimensionN– (optional, default:Float64) number type
Output
A sparse matrix that corresponds to the projection onto the variables in block.
Examples
julia> using LazySets: projection_matrix
julia> projection_matrix([1, 3], 4)
2×4 SparseArrays.SparseMatrixCSC{Float64,Int64} with 2 stored entries:
[1, 1] = 1.0
[2, 3] = 1.0
julia> Matrix(ans)
2×4 Array{Float64,2}:
1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0Functions and Macros
LazySets.an_element_helper — Function.an_element_helper(hp::Hyperplane{N},
[nonzero_entry_a]::Int) where {N<:Real}Helper function that computes an element on a hyperplane's hyperplane.
Input
hp– hyperplanenonzero_entry_a– (optional, default: computes the first index) indexisuch thathp.a[i]is different from 0
Output
An element on a hyperplane.
Algorithm
We compute the point on the hyperplane as follows:
- We already found a nonzero entry of $a$ in dimension, say, $i$.
- We set $x[i] = b / a[i]$.
- We set $x[j] = 0$ for all $j ≠ i$.
LazySets.binary_search_constraints — Function.binary_search_constraints(d::AbstractVector{N},
constraints::Vector{<:LinearConstraint{N}},
n::Int,
k::Int;
[choose_lower]::Bool=false) where {N}Performs a binary search in the constraints.
Input
d– directionconstraints– constraintsn– number of constraintsk– start indexchoose_lower– (optional, default:false) flag for choosing the lower index (see the 'Output' section)
Output
In the default setting, the result is the smallest index k such that d <= constraints[k], or n+1 if no such k exists. If the choose_lower flag is set, the result is the largest index k such that constraints[k] < d, which is equivalent to being k-1 in the normal setting.
LazySets.get_radius! — Function.get_radius!(sih::SymmetricIntervalHull{N},
i::Int,
n::Int=dim(sih)) where {N<:Real}Compute the radius of a symmetric interval hull of a convex set in a given dimension.
Input
sih– symmetric interval hull of a convex seti– dimension in which the radius should be computedn– (optional, default:dim(sih)) set dimension
Output
The radius of a symmetric interval hull of a convex set in a given dimension.
Algorithm
We ask for the support vector of the underlying set for both the positive and negative unit vector in the dimension i.
LazySets.is_tighter_same_dir_2D — Function.is_tighter_same_dir_2D(c1::LinearConstraint{N},
c2::LinearConstraint{N}) where {N<:Real}Check if the first of two two-dimensional constraints with equivalent normal direction is tighter.
Input
c1– first linear constraintc2– second linear constraintstrict– (optional; default:false) check for strictly tighter constraints?
Output
true iff the first constraint is tighter.
LazySets.sign_cadlag — Function.sign_cadlag(x::N) where {N<:Real}This function works like the sign function but is $1$ for input $0$.
Input
x– real scalar
Output
$1$ if $x ≥ 0$, $-1$ otherwise.
Notes
This is the sign function right-continuous at zero (see càdlàg function). It can be used with vector-valued arguments via the dot operator.
Examples
julia> LazySets.sign_cadlag.([-0.6, 1.3, 0.0])
3-element Array{Float64,1}:
-1.0
1.0
1.0LazySets._leq_trig — Function._leq_trig(u::AbstractVector{N}, v::AbstractVector{N}) where {N<:AbstractFloat}Compares two 2D vectors by their direction.
Input
u– first 2D directionv– second 2D direction
Output
true iff $\arg(u) [2π] ≤ \arg(v) [2π]$.
Notes
The argument is measured in counter-clockwise fashion, with the 0 being the direction (1, 0).
Algorithm
The implementation uses the arctangent function with sign, atan, which for two arguments implements the atan2 function.
LazySets._random_zero_sum_vector — Function._random_zero_sum_vector(rng::AbstractRNG, N::Type{<:Real}, n::Int)Create a random vector with entries whose sum is zero.
Input
rng– random number generatorN– numeric typen– length of vector
Output
A random vector of random numbers such that all positive entries come first and all negative entries come last, and such that the total sum is zero.
Algorithm
This is a preprocessing step of the algorithm here based on P. Valtr. Probability that n random points are in convex position.
LazySets.Arrays.rectify — Function.rectify(H::AbstractHyperrectangle)Concrete rectification of a hyperrectangular set.
Input
H– hyperrectangular set
Output
The Hyperrectangle that corresponds to the rectification of H.
rectify(x::AbstractVector{N}) where {N<:Real}Rectify a vector, i.e., take the element-wise maximum with zero.
Input
x– vector
Output
A copy of the vector where each negative entry is replaced by zero.
LazySets.require — Method.require(package::Symbol; fun_name::String="", explanation::String="")Helper method to check for optional packages and printing an error message.
Input
package– symbol of the package namefun_name– (optional; default:"") name of the function that requires the packageexplanation– (optional; default:"") additional explanation in the error message
Output
If the package is loaded, this function has no effect. Otherwise it prints an error message.
Algorithm
This function uses @assert and hence loses its ability to print an error message if assertions are deactivated.
LazySets.reseed — Function.reseed(rng::AbstractRNG, seed::Union{Int, Nothing})Reset the RNG seed if the seed argument is a number.
Input
rng– random number generatorseed– seed for reseeding
Output
The input RNG if the seed is nothing, and a reseeded RNG otherwise.
LazySets.same_block_structure — Function.sameblockstructure(x::AbstractVector{S1}, y::AbstractVector{S2} ) where {S1<:LazySet, S2<:LazySet}
Check whether two vectors of sets have the same block structure, i.e., the $i$-th entry in the vectors have the same dimension.
Input
x– first vectory– second vector
Output
true iff the vectors have the same block structure.
LazySets.substitute — Function.substitute(substitution::Dict{Int, T}, x::AbstractVector{T}) where {T}Apply a substitution to a given vector.
Input
substitution– substitution (a mapping from an index to a new value)x– vector
Output
A fresh vector corresponding to x after substitution was applied.
LazySets.substitute! — Function.substitute!(substitution::Dict{Int, T}, x::AbstractVector{T}) where {T}Apply a substitution to a given vector.
Input
substitution– substitution (a mapping from an index to a new value)x– vector (modified in this function)
Output
The same (but see the Notes below) vector x but after substitution was applied.
Notes
The vector x is modified in-place if it has type Vector or SparseVector. Otherwise, we first create a new Vector from it.
LazySets.σ_helper — Function. σ_helper(d::AbstractVector{N},
hp::Hyperplane{N};
error_unbounded::Bool=true,
[halfspace]::Bool=false) where {N<:Real}Return the support vector of a hyperplane.
Input
d– directionhp– hyperplaneerror_unbounded– (optional, default:true)trueif an error should be thrown whenever the set is unbounded in the given directionhalfspace– (optional, default:false)trueif the support vector should be computed for a half-space
Output
A pair (v, b) where v is a vector and b is a Boolean flag.
The flag b is false in one of the following cases:
- The direction has norm zero.
- The direction is the hyperplane's normal direction.
- The direction is the opposite of the hyperplane's normal direction and
halfspace is false. In all these cases, v is any point on the hyperplane.
Otherwise, the flag b is true, the set is unbounded in the given direction, and v is any vector.
If error_unbounded is true and the set is unbounded in the given direction, this function throws an error instead of returning.
Notes
For correctness, consider the weak duality of LPs: If the primal is unbounded, then the dual is infeasible. Since there is only a single constraint, the feasible set of the dual problem is hp.a ⋅ y == d, y >= 0 (with objective function hp.b ⋅ y). It is easy to see that this problem is infeasible whenever a is not parallel to d.
LazySets.get_constrained_lowdimset — Function.get_constrained_lowdimset(cpa::CartesianProductArray{N, S},
P::AbstractPolyhedron{N}
) where {N<:Real, S<:LazySet{N}}Preprocess step for intersection between Cartesian product array and polyhedron. Returns low-dimensional a CartesianProductArray in the constrained dimensions of the original cpa, constrained variables and variables in corresponding blocks, original block structure of low-dimensional set and list of constrained blocks.
Input
cpa– Cartesian product array of convex setsP– polyhedron
Output
A tuple of low-dimensional set, list of constrained dimensions, original block structure of low-dimensional set and corresponding blocks indices.
LazySets.@neutral — Macro.@neutral(SET, NEUT)Create functions to make a lazy set operation commutative with a given neutral element set type.
Input
SET– lazy set operation typeNEUT– set type for neutral element
Output
Nothing.
Notes
This macro generates four functions (possibly two more if @absorbing has been used in advance) (possibly two or four more if @declare_array_version has been used in advance).
Examples
@neutral(MinkowskiSum, N) creates at least the following functions:
neutral(::MinkowskiSum) = NMinkowskiSum(X, N) = XMinkowskiSum(N, X) = XMinkowskiSum(N, N) = N
LazySets.@absorbing — Macro.@absorbing(SET, ABS)Create functions to make a lazy set operation commutative with a given absorbing element set type.
Input
SET– lazy set operation typeABS– set type for absorbing element
Output
Nothing.
Notes
This macro generates four functions (possibly two more if @neutral has been used in advance) (possibly two or four more if @declare_array_version has been used in advance).
Examples
@absorbing(MinkowskiSum, A) creates at least the following functions:
absorbing(::MinkowskiSum) = AMinkowskiSum(X, A) = AMinkowskiSum(A, X) = AMinkowskiSum(A, A) = A
LazySets.@neutral_absorbing — Macro.@neutral_absorbing(SET, NEUT, ABS)Create two functions to avoid method ambiguties for a lazy set operation with respect to neutral and absorbing element set types.
Input
SET– lazy set operation typeNEUT– set type for neutral elementABS– set type for absorbing element
Output
A quoted expression containing the function definitions.
Examples
@neutral_absorbing(MinkowskiSum, N, A) creates the following functions as quoted expressions:
MinkowskiSum(N, A) = AMinkowskiSum(A, N) = A
LazySets.@declare_array_version — Macro.@declare_array_version(SET, SETARR)Create functions to connect a lazy set operation with its array set type.
Input
SET– lazy set operation typeSETARR– array set type
Output
Nothing.
Notes
This macro generates six functions (and possibly up to eight more if @neutral/@absorbing has been used in advance for the base and/or array set type).
Examples
@declare_array_version(MinkowskiSum, MinkowskiSumArray) creates at least the following functions:
array_constructor(::MinkowskiSum) = MinkowskiSumArrayis_array_constructor(::MinkowskiSumArray) = trueMinkowskiSum!(X, Y)MinkowskiSum!(X, arr)MinkowskiSum!(arr, X)MinkowskiSum!(arr1, arr2)
LazySets.@array_neutral — Macro.@array_neutral(FUN, NEUT, SETARR)Create two functions to avoid method ambiguities for a lazy set operation with respect to the neutral element set type and the array set type.
Input
FUN– function nameNEUT– set type for neutral elementSETARR– array set type
Output
A quoted expression containing the function definitions.
Examples
@array_neutral(MinkowskiSum, N, ARR) creates the following functions as quoted expressions:
MinkowskiSum(N, ARR) = ARRMinkowskiSum(ARR, N) = ARR
LazySets.@array_absorbing — Macro.@array_absorbing(FUN, ABS, SETARR)Create two functions to avoid method ambiguities for a lazy set operation with respect to the absorbing element set type and the array set type.
Input
FUN– function nameABS– set type for absorbing elementSETARR– array set type
Output
A quoted expression containing the function definitions.
Examples
@array_absorbing(MinkowskiSum, ABS, ARR) creates the following functions as quoted expressions:
MinkowskiSum(ABS, ARR) = ABSMinkowskiSum(ARR, ABS) = ABS
Types
LazySets.CachedPair — Type.CachedPair{N}A mutable pair of an index and a vector.
Fields
idx– indexvec– vector
StrictlyIncreasingIndicesIterator over the vectors of m strictly increasing indices from 1 to n.
Fields
n– size of the index domainm– number of indices to choose (resp. length of the vectors)
Notes
The vectors are modified in-place.
The iterator ranges over $\binom{n}{m}$ (n choose m) possible vectors.
This implementation results in a lexicographic order with the last index growing first.
Examples
julia> for v in LazySets.StrictlyIncreasingIndices(4, 2)
println(v)
end
[1, 2]
[1, 3]
[1, 4]
[2, 3]
[2, 4]
[3, 4]Inspection of set interfaces
InteractiveUtils.subtypes — Method.subtypes(interface, concrete::Bool)Return the concrete subtypes of a given interface.
Input
interface– an abstract type, usually a set interfaceconcrete– iftrue, seek further the inner abstract subtypes of the given interface, otherwise return only the direct subtypes ofinterface
Output
A list with the subtypes of the abstract type interface, sorted alphabetically.
Examples
Consider the AbstractPolytope interface. If we include the abstract subtypes of this interface,
julia> using LazySets: subtypes
julia> subtypes(AbstractPolytope, false)
4-element Array{Any,1}:
AbstractCentrallySymmetricPolytope
AbstractPolygon
HPolytope
VPolytopeWe can use this function to obtain the concrete subtypes of AbstractCentrallySymmetricPolytope and AbstractPolygon (further until all concrete types are obtained), using the concrete flag:
julia> subtypes(AbstractPolytope, true)
14-element Array{Type,1}:
Ball1
BallInf
HPolygon
HPolygonOpt
HPolytope
Hyperrectangle
Interval
LineSegment
Singleton
SymmetricIntervalHull
VPolygon
VPolytope
ZeroSet
ZonotopeLazySets.implementing_sets — Function.implementing_sets(op::Function;
signature::Tuple{Vector{Type}, Int}=(Type[], 1),
type_args=Float64, binary::Bool=false)Compute a dictionary containing information about availability of (unary or binary) concrete set operations.
Input
op– set operation (respectively itsFunctionobject)signature– (optional, default:Type[]) the type signature of the function without theLazySettype(s) (see also theindexoption and theExamplessection below)index– (optional, default:1) index of the set type in the signature in the unary case (see thebinaryoption)type_args– (optional, default:Float64) type arguments added to theLazySet(s) when searching for available methods; valid inputs are a type ornothing, and in the unary case (see thebinaryoption) it can also be a list of typesbinary– (optional, default:false) flag indicating whetheropis a binary function (true) or a unary function (false)
Output
A dictionary with three keys each mapping to a list:
"available"– This list contains all set types such that there exists an implementation ofop."missing"– This list contains all set types such that there does not exist an implementation ofop. Note that this is the complement of the"available"list."specific"– This list contains all set types such that there exists a type-specific implementation. Note that those set types also occur in the"available"list.
In the unary case, the lists contain set types. In the binary case, the lists contain pairs of set types.
Examples
julia> using LazySets: implementing_sets
julia> dict = implementing_sets(tovrep);
julia> dict["available"] # tovrep is only available for polyhedral set types
6-element Array{Type,1}:
HPolygon
HPolygonOpt
HPolyhedron
HPolytope
VPolygon
VPolytope
julia> dict = implementing_sets(σ; signature=Type[AbstractVector{Float64}], index=2);
julia> dict["missing"] # every set type implements function σ
0-element Array{Type,1}
julia> N = Rational{Int}; # restriction of the number type
julia> dict = implementing_sets(σ; signature=Type[AbstractVector{N}], index=2, type_args=N);
julia> dict["missing"] # some set types are not available with number type N
4-element Array{Type,1}:
Ball2
Ballp
Bloating
Ellipsoid
julia> dict = LazySets.implementing_sets(convex_hull; binary=true); # binary case
julia> (HPolytope, HPolytope) ∈ dict["available"] # dict contains pairs now
trueSampling
LazySets._sample_unit_nsphere_muller! — Function._sample_unit_nsphere_muller!(D::Vector{Vector{N}}, n::Int, p::Int;
rng::AbstractRNG=GLOBAL_RNG,
seed::Union{Int, Nothing}=nothing) where {N}Draw samples from a uniform distribution on an $n$-dimensional unit sphere using Muller's method.
Input
D– output, vector of pointsn– dimension of the spherep– number of random samplesrng– (optional, default:GLOBAL_RNG) random number generatorseed– (optional, default:nothing) seed for reseeding
Output
A vector of nsamples vectors.
Algorithm
This function implements Muller's method of normalised Gaussians [1] to uniformly sample over the $n$-dimensional sphere $S^n$ (which is the bounding surface of the $n$-dimensional unit ball).
Given $n$ canonical Gaussian random variables $Z₁, Z₂, …, Z_n$, the distribution of the vectors
where $α := \sqrt{z₁² + z₂² + … + z_n²}$, is uniform over $S^n$.
[1] Muller, Mervin E. A note on a method for generating points uniformly on n-dimensional spheres. Communications of the ACM 2.4 (1959): 19-20.
LazySets._sample_unit_nball_muller! — Function._sample_unit_nball_muller!(D::Vector{Vector{N}}, n::Int, p::Int;
rng::AbstractRNG=GLOBAL_RNG,
seed::Union{Int, Nothing}=nothing) where {N}Draw samples from a uniform distribution on an $n$-dimensional unit ball using Muller's method.
Input
D– output, vector of pointsn– dimension of the ballp– number of random samplesrng– (optional, default:GLOBAL_RNG) random number generatorseed– (optional, default:nothing) seed for reseeding
Output
A vector of nsamples vectors.
Algorithm
This function implements Muller's method of normalised Gaussians [1] to sample from the interior of the ball.
Given $n$ Gaussian random variables $Z₁, Z₂, …, Z_n$ and a uniformly distributed random variable $r$ with support in $[0, 1]$, the distribution of the vectors
where $α := \sqrt{z₁² + z₂² + … + z_n²}$, is uniform over the $n$-dimensional unit ball.
[1] Muller, Mervin E. A note on a method for generating points uniformly on n-dimensional spheres. Communications of the ACM 2.4 (1959): 19-20.
LazySets.sample — Function.sample(B::Ball2{N, VN}, nsamples::Int=1;
[rng]::AbstractRNG=GLOBAL_RNG,
[seed]::Union{Int, Nothing}=nothing) where {N<:AbstractFloat, VN<:AbstractVector{N}}Return samples from a uniform distribution on the given ball in the 2-norm.
Input
B– ball in the 2-normnsamples– (optional, default:1) number of samplesrng– (optional, default:GLOBAL_RNG) random number generatorseed– (optional, default:nothing) seed for reseeding
Output
A linear array of nsamples elements drawn from a uniform distribution in B.
Algorithm
Random sampling with uniform distribution in B is computed using Muller's method of normalized Gaussians. This function requires the package Distributions. See _sample_unit_nball_muller! for implementation details.
sample(X::LazySet{N}, num_samples::Int;
[sampler]=nothing,
[rng]::AbstractRNG=GLOBAL_RNG,
[seed]::Union{Int, Nothing}=nothing) where {N}Sampling of an arbitrary bounded set X.
Input
X– (bounded) set to be samplednum_samples– number of random samplessampler– sampler used (default:nothing, which falls back toRejectionSampler)rng– (optional, default:GLOBAL_RNG) random number generatorseed– (optional, default:nothing) seed for reseeding
Output
A vector of num_samples vectors. If num_samples is not passed, the result is just one sample (not wrapped in a vector).
Algorithm
See the documentation of the respective Sampler.
LazySets.Sampler — Type.SamplerAbstract type for defining new sample methods.
Notes
All subtypes should implement a _sample! method.
LazySets.RejectionSampler — Type.RejectionSampler{S<:LazySet, D<:Distribution} <: SamplerType used for rejection sampling of an arbitrary LazySet X.
Fields
X– (bounded) set to be sampledbox_approx– Distribution from which the sample is drawn
Algorithm
Draw a sample $x$ from a uniform distribution of a box-overapproximation of the original set $X$ in all $n$ dimensions. The function rejects a drawn sample $x$ and redraws as long as the sample is not contained in the original set $X$, i.e., $x ∉ X$.
LazySets._sample! — Function._sample!(D::Vector{Vector{N}},
sampler::RejectionSampler;
rng::AbstractRNG=GLOBAL_RNG,
seed::Union{Int, Nothing}=nothing) where {N<:Real}Sample points using rejection sampling.
Input
D– output, vector of pointssampler– Sampler from which the points are sampledrng– (optional, default:GLOBAL_RNG) random number generatorseed– (optional, default:nothing) seed for reseeding
Output
A vector of num_samples vectors.
Volume
LazySets.volume — Function.volume(H::AbstractHyperrectangle{N}) where {N<:Real}Return the volume of a hyperrectangular set.
Input
H– hyperrectangular set
Output
The volume of $H$.
Algorithm
The volume of the $n$-dimensional hyperrectangle $H$ with vector radius $r$ is $2ⁿ ∏ᵢ rᵢ$ where $rᵢ$ denotes the $i$-th component of $r$.
volume(B::Ball2{N}) where {N<:AbstractFloat}Return the volume of a ball in the 2-norm.
Input
B– ball in the 2-norm
Output
The volume of $B$.
Algorithm
This function implements the well-known formula for the volume of an n-dimensional ball using factorials. For details see the wikipedia article Volume of an n-ball.