Universe
LazySets.Universe — Type.Universe{N<:Real} <: AbstractPolyhedron{N}Type that represents the universal set, i.e., the set of all elements.
LazySets.dim — Method.dim(U::Universe)Return the dimension of a universe.
Input
U– universe
Output
The dimension of a universe.
LazySets.ρ — Method.ρ(d::AbstractVector{N}, U::Universe{N}) where {N<:Real}Return the support function of a universe.
Input
d– directionU– universe
Output
The support function in the given direction.
Algorithm
If the direction is all zero, the result is zero. Otherwise, the result is Inf.
LazySets.σ — Method.σ(d::AbstractVector{N}, U::Universe{N}) where {N<:Real}Return the support vector of a universe.
Input
d– directionU– universe
Output
A vector with infinity values, except in dimensions where the direction is zero.
Base.:∈ — Method.∈(x::AbstractVector{N}, U::Universe{N}) where {N<:Real}Check whether a given point is contained in a universe.
Input
x– point/vectorU– universe
Output
The output is always true.
Examples
julia> [1.0, 0.0] ∈ Universe(2)
trueBase.rand — Method.rand(::Type{Universe}; [N]::Type{<:Real}=Float64, [dim]::Int=2,
     [rng]::AbstractRNG=GLOBAL_RNG, [seed]::Union{Int, Nothing}=nothing)Create a universe (note that there is nothing to randomize).
Input
Universe– type for dispatchN– (optional, default:Float64) numeric typedim– (optional, default: 2) dimensionrng– (optional, default:GLOBAL_RNG) random number generatorseed– (optional, default:nothing) seed for reseeding
Output
The (only) universe of the given numeric type and dimension.
LazySets.an_element — Method.an_element(U::Universe{N}) where {N<:Real}Return some element of a universe.
Input
U– universe
Output
The origin.
Base.isempty — Method.isempty(U::Universe)Return if a universe is empty or not.
Input
U– universe
Output
false.
LazySets.isbounded — Method.isbounded(U::Universe)Determine whether a universe is bounded.
Input
U– universe
Output
false as the universe is unbounded.
LazySets.isuniversal — Method.isuniversal(U::Universe{N}, [witness]::Bool=false) where {N<:Real}Check whether a universe is universal.
Input
U– universewitness– (optional, default:false) compute a witness if activated
Output
- If 
witnessoption is deactivated:true - If 
witnessoption is activated:(true, []) 
LinearAlgebra.norm — Function.norm(U::Universe, [p]::Real=Inf)Return the norm of a universe. It is the norm of the enclosing ball (of the given $p$-norm) of minimal volume that is centered in the origin.
Input
U– universep– (optional, default:Inf) norm
Output
An error.
LazySets.radius — Function.radius(U::Universe, [p]::Real=Inf)Return the radius of a universe. It is the radius of the enclosing ball (of the given $p$-norm) of minimal volume with the same center.
Input
U– universep– (optional, default:Inf) norm
Output
An error.
LazySets.diameter — Function.diameter(U::Universe, [p]::Real=Inf)Return the diameter of a universe. It is the maximum distance between any two elements of the set, or, equivalently, the diameter of the enclosing ball (of the given $p$-norm) of minimal volume with the same center.
Input
U– universep– (optional, default:Inf) norm
Output
An error.
LazySets.constraints_list — Method.constraints_list(U::Universe{N}) where {N<:Real}Return the list of constraints defining a universe.
Input
U– universe
Output
The empty list of constraints, as the universe is unconstrained.
LazySets.constrained_dimensions — Method.constrained_dimensions(U::Universe)Return the indices in which a universe is constrained.
Input
U– universe
Output
The empty vector, as the universe is unconstrained in every dimension.
LazySets.translate — Method.translate(U::Universe{N}, v::AbstractVector{N}) where {N<:Real}Translate (i.e., shift) a universe by a given vector.
Input
U– universev– translation vector
Output
The universe.