PolynomialZonotope

Polynomial zonotope (PolynomialZonotope)

PolynomialZonotope{N}

Type that represents a polynomial zonotope.

Fields

  • c – starting point
  • E – matrix of multi-indexed generators such that all indices have the same value
  • F – matrix of multi-indexed generators such that not all indices have the same value
  • G – matrix of single-indexed generators

Notes

Polynomial zonotopes were introduced by M. Althoff in [1] and have been applied as a non-convex set representation in the reachability problem of nonlinear ODEs.

Mathematically, a polynomial zonotope is defined as the tuple $(c, E, F, G)$, where:

  • $c ∈ \mathbb{R}^n$ is the starting point (in some particular cases it corresponds to the center of a usual zonotope),

  • $E = [E^{[1]} ⋯ E^{[η]}]$ is an $n × p × η(η+1)/2$ matrix with column-blocks

\[E^{[i]} = [f^{([i], 1, 1, …, 1)} ⋯ f^{([i], p, p, …, p)}], \qquad i = 1,…, η\]

called the matrix of multi-indexed generators with equal indices, where each $f^{([i], k_1, k_2, …, k_i)}$ is an $n$-vector,

  • $F = [F^{[2]} ⋯ F^{[η]}]$ is a matrix with column-blocks
\[F^{[i]} = [f^{([i], 1, 1, …, 1, 2)} f^{([i], 1, 1, …, 1, 3)} ⋯ f^{([i], 1, 1, …, 1, p)} \\ f^{([i], 1, 1, …, 2, 2)} f^{([i], 1, 1, …, 2, 3)} ⋯ f^{([i], 1, 1, …, 2, p)} \\ f^{([i], 1, 1, …, 3, 3)} ⋯], \qquad i = 1,…, η\]

called the matrix of multi-indexed generators with unequal indices (or, more accurately, not-all-equal indices), where each $f^{([i], k_1, k_2, …, k_i)}$ is an $n$-vector,

  • $G = [G^{[1]} ⋯ G^{[q]}]$ is an $n × q$ matrix with columns
\[G^{[i]} = g^{(i)}, \qquad i = 1,…, q\]

called the matrix of single-indexed generators, where each $g^{(i)}$ is an $n$-vector.

The polynomial zonotope $(c, E, F, G)$ defines the set:

\[\mathcal{PZ} = \left\{ c + ∑_{j=1}^p β_j f^{([1], j)} + ∑_{j=1}^p ∑_{k=j}^p β_j β_k f^{([2], j, k)} + \\ + … + ∑_{j=1}^p ∑_{k=j}^p ⋯ ∑_{m=ℓ}^p β_j β_k ⋯ β_m f^{([η], j, k, …, m)} + \\ + ∑_{i=1}^q γ_i g^{(i)}, \qquad β_i, γ_i ∈ [-1, 1] \right\},\]

where the number of factors in the final product, $β_j β_k ⋯ β_m$, corresponds to the polynomial order $η$.

[1] M. Althoff in Reachability analysis of nonlinear systems using conservative polynomialization and non-convex sets, Hybrid Systems: Computation and Control, 2013, pp. 173–182.

source
LazySets.dimMethod.
dim(pz::PolynomialZonotope)

Return the ambient dimension of a polynomial zonotope.

Input

  • pz – polynomial zonotope

Output

An integer representing the ambient dimension of the polynomial zonotope.

source
LazySets.σMethod.
σ(d::AbstractVector{N}, pz::PolynomialZonotope{N}) where {N}

Return the support vector of a polynomial zonotope along direction d.

Input

  • d – direction
  • pz – polynomial zonotope

Output

Vector representing the support vector.

source
LazySets.ρMethod.
ρ(d::AbstractVector{N}, pz::PolynomialZonotope{N}) where {N}

Return the support function of a polynomial zonotope along direction d.

Input

  • d – direction
  • pz – polynomial zonotope

Output

Value of the support function.

source
polynomial_order(pz::PolynomialZonotope)

Polynomial order of a polynomial zonotope.

Input

  • pz – polynomial zonotope

Output

The polynomial order, defined as the maximal power of the scale factors $β_i$. Usually denoted $η$.

source
LazySets.orderMethod.
order(pz::PolynomialZonotope)

Order of a polynomial zonotope.

Input

  • pz – polynomial zonotope

Output

The order, a rational number defined as the total number of generators divided by the ambient dimension.

source
linear_map(M::Matrix, pz::PolynomialZonotope)

Return the linear map of a polynomial zonotope.

Input

  • M – matrix
  • pz – polynomial zonotope

Output

Polynomial zonotope such that its starting point and generators are those of pz multiplied by the matrix M.

source
LazySets.scaleMethod.
scale(α::Number, pz::PolynomialZonotope)

Return a polynomial zonotope modified by a scale factor.

Input

  • α – polynomial zonotope
  • pz – polynomial zonotope

Output

Polynomial zonotope such that its center and generators are multiples of those of pz by a factor $α$.

source