Affine map (AffineMap)
LazySets.AffineMap
— Type.AffineMap{N<:Real, S<:LazySet{N}, NM, MAT<:AbstractMatrix{NM},
VN<:AbstractVector{NM}} <: LazySet{N}
Type that represents an affine transformation $M⋅X ⊕ v$ of a convex set $X$.
Fields
M
– matrix/linear mapX
– convex setv
– translation vector
Notes
An affine map is the composition of a linear map and a translation. This type is parametric in the coefficients of the linear map, NM
, which may be different from the numeric type of the wrapped set (N
). However, the numeric type of the translation vector should be NM
.
Examples
For the examples we create a $3×2$ matrix, a two-dimensional unit square, and a three-dimensional vector. Then we combine them in an AffineMap
.
julia> A = [1 2; 1 3; 1 4]; X = BallInf([0, 0], 1); b2 = [1, 2]; b3 = [1, 2, 3];
julia> AffineMap(A, X, b3)
AffineMap{Int64,BallInf{Int64},Int64,Array{Int64,2},Array{Int64,1}}([1 2; 1 3; 1 4], BallInf{Int64}([0, 0], 1), [1, 2, 3])
For convenience, A
does not need to be a matrix but we also allow to use UniformScaling
s resp. scalars (interpreted as a scaling, i.e., a scaled identity matrix). Scaling by $1$ is ignored and simplified to a pure Translation
.
julia> using LinearAlgebra
julia> am = AffineMap(2I, X, b2)
AffineMap{Int64,BallInf{Int64},Int64,Diagonal{Int64,Array{Int64,1}},Array{Int64,1}}([2 0; 0 2], BallInf{Int64}([0, 0], 1), [1, 2])
julia> AffineMap(2, X, b2) == am
true
julia> AffineMap(1, X, b2)
Translation{Int64,Array{Int64,1},BallInf{Int64}}(BallInf{Int64}([0, 0], 1), [1, 2])
Applying a linear map to an AffineMap
object combines the two maps into a new AffineMap
instance. Again we can make use of the conversion for convenience.
julia> B = [2 0; 0 2]; am2 = B * am
AffineMap{Int64,BallInf{Int64},Int64,Array{Int64,2},Array{Int64,1}}([4 0; 0 4], BallInf{Int64}([0, 0], 1), [2, 4])
julia> 2 * am == am2
true
The application of an AffineMap
to a ZeroSet
or an EmptySet
is simplified automatically.
julia> AffineMap(A, ZeroSet{Int}(2), b3)
Singleton{Int64,Array{Int64,1}}([1, 2, 3])
julia> AffineMap(A, EmptySet{Int}(), b3)
EmptySet{Int64}()
LazySets.dim
— Method.dim(am::AffineMap)
Return the dimension of an affine map.
Input
am
– affine map
Output
The dimension of an affine map.
LazySets.σ
— Method.σ(d::AbstractVector{N}, am::AffineMap{N}) where {N<:Real}
Return the support vector of an affine map.
Input
d
– directionam
– affine map
Output
The support vector in the given direction.
LazySets.ρ
— Method.ρ(d::AbstractVector{N}, am::AffineMap{N}) where {N<:Real}
Return the support function of an affine map.
Input
d
– directionam
– affine map
Output
The support function in the given direction.
LazySets.an_element
— Method.an_element(am::AffineMap)
Return some element of an affine map.
Input
am
– affine map
Output
An element of the affine map. It relies on the an_element
function of the wrapped set.
Base.isempty
— Method.isempty(am::AffineMap)
Return whether an affine map is empty or not.
Input
am
– affine map
Output
true
iff the wrapped set is empty and the affine vector is empty.
LazySets.isbounded
— Method.isbounded(am::AffineMap; cond_tol::Number=DEFAULT_COND_TOL)
Determine whether an affine map is bounded.
Input
am
– affine mapcond_tol
– (optional) tolerance of matrix condition (used to check whether the matrix is invertible)
Output
true
iff the affine map is bounded.
Algorithm
We first check if the matrix is zero or the wrapped set is bounded. If not, we perform a sufficient check whether the matrix is invertible. If the matrix is invertible, then the map being bounded is equivalent to the wrapped set being bounded, and hence the map is unbounded. Otherwise, we check boundedness via isbounded_unit_dimensions
.
Base.:∈
— Method.∈(x::AbstractVector{N}, am::AffineMap{N}) where {N<:Real}
Check whether a given point is contained in the affine map of a convex set.
Input
x
– point/vectoram
– affine map of a convex set
Output
true
iff $x ∈ am$.
Algorithm
Note that $x ∈ M⋅S ⊕ v$ iff $M^{-1}⋅(x - v) ∈ S$. This implementation does not explicitly invert the matrix, which is why it also works for non-square matrices.
Examples
julia> am = AffineMap([2.0 0.0; 0.0 1.0], BallInf([1., 1.], 1.), [-1.0, -1.0]);
julia> [5.0, 1.0] ∈ am
false
julia> [3.0, 1.0] ∈ am
true
An example with a non-square matrix:
julia> B = BallInf(zeros(4), 1.);
julia> M = [1. 0 0 0; 0 1 0 0]/2;
julia> [0.5, 0.5] ∈ M*B
true
LazySets.vertices_list
— Method.vertices_list(am::AffineMap{N}; [apply_convex_hull]::Bool) where {N<:Real}
Return the list of vertices of a (polyhedral) affine map.
Input
am
– affine mapapply_convex_hull
– (optional, default:true
) iftrue
, apply the convex hull operation to the list of vertices transformed by the affine map
Output
A list of vertices.
Algorithm
This implementation computes all vertices of X
, then transforms them through the affine map, i.e. x ↦ M*x + v
for each vertex x
of X
. By default, the convex hull operation is taken before returning this list. For dimensions three or higher, this operation relies on the functionality through the concrete polyhedra library Polyhedra.jl
.
If you are not interested in taking the convex hull of the resulting vertices under the affine map, pass apply_convex_hull=false
as a keyword argument.
Note that we assume that the underlying set X
is polyhedral, either concretely or lazily, i.e. there the function vertices_list
should be applicable.
LazySets.constraints_list
— Method.constraints_list(am::AffineMap{N}) where {N<:Real}
Return the list of constraints of a (polyhedral) affine map.
Input
am
– affine map
Output
The list of constraints of the affine map.
Notes
We assume that the underlying set X
is polyhedral, i.e., offers a method constraints_list(X)
.
Algorithm
Falls back to the list of constraints of the translation of a lazy linear map.
LazySets.linear_map
— Method.linear_map(M::AbstractMatrix{N}, am::AffineMap{N}) where {N<:Real}
Return the linear map of a lazy affine map.
Input
M
– matrixam
– affine map
Output
A set corresponding to the linear map of the lazy affine map of a set.