Star
LazySets.Star
— TypeStar{N, VN<:AbstractVector{N}, MN<:AbstractMatrix{N}, PT<:AbstractPolyhedron{N}} <: AbstractPolyhedron{N}
Generalized star set with a polyhedral predicate, i.e.
\[X = \{x ∈ \mathbb{R}^n : x = x₀ + \sum_{i=1}^m α_i v_i,~~\textrm{s.t. } P(α) = ⊤ \},\]
where $x₀ ∈ \mathbb{R}^n$ is the center, the $m$ vectors $v₁, …, vₘ$ form the basis of the star set, and the combination factors $α = (α₁, …, αₘ) ∈ \mathbb{R}^m$ are the predicates' decision variables, i.e. $P : α ∈ \mathbb{R}^m → \{⊤, ⊥\}$ where the polyhedral predicate satisfies $P(α) = ⊤$ if and only if $Aα ≤ b$ for some fixed $A ∈ \mathbb{R}^{p × m}$ and $b ∈ \mathbb{R}^p$.
Fields
c
– vector that represents the centerV
– matrix where each column corresponds to a basis vectorP
– polyhedral set that represents the predicate
Notes
The predicate function is implemented as a conjunction of linear constraints, i.e. a subtype of AbstractPolyhedron
. By a slight abuse of notation, the predicate is also used to denote the subset of $\mathbb{R}^n$ such that $P(α) = ⊤$ holds.
The $m$ basis vectors (each one $n$-dimensional) are stored as the columns of an $n × m$ matrix.
We remark that a Star
is mathematically equivalent to the lazy affine map of the polyhedral set P
, with the transformation matrix and translation vector being V
and c
respectively.
Examples
This example is drawn from Example 1 in [2]. Consider the two-dimensional plane $\mathbb{R}^2$. Let
julia> V = [[1.0, 0.0], [0.0, 1.0]];
be the basis vectors and take
julia> c = [3.0, 3.0];
as the center of the star set. Let the predicate be the infinity-norm ball of radius 1,
julia> P = BallInf(zeros(2), 1.0);
Finally, the star set $X = ⟨c, V, P⟩$ defines the set:
julia> S = Star(c, V, P)
Star{Float64,Array{Float64,1},Array{Float64,2},BallInf{Float64,Array{Float64,1}}}([3.0, 3.0], [1.0 0.0; 0.0 1.0], BallInf{Float64,Array{Float64,1}}([0.0, 0.0], 1.0))
We can use getter functions for each component field:
julia> center(S)
2-element Array{Float64,1}:
3.0
3.0
julia> basis(S)
2×2 Array{Float64,2}:
1.0 0.0
0.0 1.0
julia> predicate(S)
BallInf{Float64,Array{Float64,1}}([0.0, 0.0], 1.0)
In this case, we know calculating by hand that the generalized star $S$ is defined by the rectangular set
\[ T = \{(x, y) ∈ \mathbb{R}^2 : (2 ≤ x ≤ 4) ∧ (2 ≤ y ≤ 4) \}\]
It holds that $T$ and $S$ are equivalent.
References
Star sets as defined here were introduced in [1]; see also [2] for a preliminary definition. For applications in reachability analysis of neural networks, see [3].
[1] Duggirala, P. S., and Mahesh V. Parsimonious, simulation based verification of linear systems. International Conference on Computer Aided Verification. Springer, Cham, 2016.
[2] Bak S, Duggirala PS. Simulation-equivalent reachability of large linear systems with inputs. In International Conference on Computer Aided Verification 2017 Jul 24 (pp. 401-420). Springer, Cham.
[3] Tran, H. D., Lopez, D. M., Musau, P., Yang, X., Nguyen, L. V., Xiang, W., & Johnson, T. T. (2019, October). Star-based reachability analysis of deep neural networks. In International Symposium on Formal Methods (pp. 670-686). Springer, Cham.
LazySets.center
— Methodcenter(X::Star)
Return the center of a star.
Input
X
– star
Output
The center of the star.
LazySets.predicate
— Methodpredicate(X::Star)
Return the predicate of a star.
Input
X
– star
Output
A polyhedral set representing the predicate of the star.
LazySets.basis
— Methodbasis(X::Star)
Return the basis vectors of a star.
Input
X
– star
Output
A matrix where each column is a basis vector of the star.
LazySets.dim
— Methoddim(X::Star)
Return the dimension of a star.
Input
X
– star
Output
The dimension of a star.
LazySets.σ
— Methodσ(d::AbstractVector, X::Star)
Return the support vector of a star.
Input
d
– directionX
– star
Output
The support vector in the given direction.
LazySets.ρ
— Methodρ(d::AbstractVector, X::Star)
Return the support function of a star.
Input
d
– directionX
– star
Output
The support function in the given direction.
LazySets.an_element
— Methodan_element(X::Star)
Return some element of an affine map.
Input
X
– star
Output
An element of the star. It relies on the an_element
function of the wrapped set.
Base.isempty
— Methodisempty(X::Star)
Return whether an affine map is empty or not.
Input
am
– affine map
Output
true
iff the predicate is empty.
LazySets.isbounded
— Methodisbounded(am::Star; cond_tol::Number=DEFAULT_COND_TOL)
Determine whether a star is bounded.
Input
X
– starcond_tol
– (optional) tolerance of matrix condition (used to check whether the basis matrix is invertible)
Output
true
iff the star is bounded.
Algorithm
Base.:∈
— Method∈(v::AbstractVector, X::Star)
Check whether a given point is contained in a star set.
Input
v
– point/vectorX
– star
Output
true
iff $v ∈ X$.
Algorithm
LazySets.vertices_list
— Methodvertices_list(X::Star; apply_convex_hull::Bool=true)
Return the list of vertices of a star set.
Input
X
– starapply_convex_hull
– (optional, default:true
) iftrue
, apply the convex hull operation to the list of vertices of the star
Output
A list of vertices.
Algorithm
LazySets.constraints_list
— Methodconstraints_list(X::Star)
Return the list of constraints of a star.
Input
X
– star
Output
The list of constraints of the star.
Algorithm
LazySets.linear_map
— Methodlinear_map(M::AbstractMatrix, X::Star)
Return the linear map of a star.
Input
M
– matrixX
– star
Output
The star obtained by applying M
to X
.
LazySets.affine_map
— Methodaffine_map(M::AbstractMatrix, X::Star, v::AbstractVector)
Return the affine map of a star.
Input
M
– matrixX
– starv
– vector
Output
The star obtained by the affine map with matrix M
and displacement v
to X
.
LazySets.intersection
— Methodintersection(X::Star, H::HalfSpace)
Return the intersection between a star and a halfspace.
Input
X
– starH
– halfspace
Output
A star set representing the intersection between a star and a halfspace.
Base.rand
— Methodrand(::Type{Star}; [N]::Type{<:Real}=Float64, [dim]::Int=2,
[rng]::AbstractRNG=GLOBAL_RNG, [seed]::Union{Int, Nothing}=nothing)
Create a random star.
Input
Star
– type for dispatchN
– (optional, default:Float64
) numeric typedim
– (optional, default: 2) dimensionrng
– (optional, default:GLOBAL_RNG
) random number generatorseed
– (optional, default:nothing
) seed for reseeding
Output
A random star.
Algorithm
This functions calls the function to generate a random zonotope, because every zonotope is a star.