Hyperplane
LazySets.Hyperplane
— TypeHyperplane{N, VN<:AbstractVector{N}} <: AbstractPolyhedron{N}
Type that represents a hyperplane of the form $a⋅x = b$.
Fields
a
– normal direction (non-zero)b
– constraint
Examples
The plane $y = 0$:
julia> Hyperplane([0, 1.], 0.)
Hyperplane{Float64,Array{Float64,1}}([0.0, 1.0], 0.0)
LazySets.dim
— Methoddim(hp::Hyperplane)
Return the dimension of a hyperplane.
Input
hp
– hyperplane
Output
The ambient dimension of the hyperplane.
LazySets.ρ
— Methodρ(d::AbstractVector, hp::Hyperplane)
Evaluate the support function of a hyperplane in a given direction.
Input
d
– directionhp
– hyperplane
Output
The support function of the hyperplane. If the set is unbounded in the given direction, the result is Inf
.
LazySets.σ
— Methodσ(d::AbstractVector, hp::Hyperplane)
Return the support vector of a hyperplane.
Input
d
– directionhp
– hyperplane
Output
The support vector in the given direction, which is only defined in the following two cases:
- The direction has norm zero.
- The direction is the hyperplane's normal direction or its opposite direction.
In all cases, the result is any point on the hyperplane. Otherwise this function throws an error.
Base.:∈
— Method∈(x::AbstractVector, hp::Hyperplane)
Check whether a given point is contained in a hyperplane.
Input
x
– point/vectorhp
– hyperplane
Output
true
iff $x ∈ hp$.
Algorithm
We just check if $x$ satisfies $a⋅x = b$.
LazySets.an_element
— Methodan_element(hp::Hyperplane)
Return some element of a hyperplane.
Input
hp
– hyperplane
Output
An element on the hyperplane.
Base.rand
— Methodrand(::Type{Hyperplane}; [N]::Type{<:Real}=Float64, [dim]::Int=2,
[rng]::AbstractRNG=GLOBAL_RNG, [seed]::Union{Int, Nothing}=nothing)
Create a random hyperplane.
Input
Hyperplane
– type for dispatchN
– (optional, default:Float64
) numeric typedim
– (optional, default: 2) dimensionrng
– (optional, default:GLOBAL_RNG
) random number generatorseed
– (optional, default:nothing
) seed for reseeding
Output
A random hyperplane.
Algorithm
All numbers are normally distributed with mean 0 and standard deviation 1. Additionally, the constraint a
is nonzero.
LazySets.isbounded
— Methodisbounded(hp::Hyperplane)
Determine whether a hyperplane is bounded.
Input
hp
– hyperplane
Output
false
.
LazySets.isuniversal
— Functionisuniversal(hp::Hyperplane, [witness]::Bool=false)
Check whether a hyperplane is universal.
Input
P
– hyperplanewitness
– (optional, default:false
) compute a witness if activated
Output
- If
witness
option is deactivated:false
- If
witness
option is activated:(false, v)
where $v ∉ P$
Algorithm
A witness is produced by adding the normal vector to an element on the hyperplane.
Base.isempty
— Methodisempty(hp::Hyperplane)
Return if a hyperplane is empty or not.
Input
hp
– hyperplane
Output
false
.
LazySets.constrained_dimensions
— Methodconstrained_dimensions(hp::Hyperplane)
Return the indices in which a hyperplane is constrained.
Input
hp
– hyperplane
Output
A vector of ascending indices i
such that the hyperplane is constrained in dimension i
.
Examples
A 2D hyperplane with constraint $x1 = 0$ is constrained in dimension 1 only.
LazySets.constraints_list
— Methodconstraints_list(hp::Hyperplane)
Return the list of constraints of a hyperplane.
Input
hp
– hyperplane
Output
A list containing two half-spaces.
LazySets.translate
— Methodtranslate(hp::Hyperplane, v::AbstractVector; share::Bool=false)
Translate (i.e., shift) a hyperplane by a given vector.
Input
hp
– hyperplanev
– translation vectorshare
– (optional, default:false
) flag for sharing unmodified parts of the original set representation
Output
A translated hyperplane.
Notes
The normal vectors of the hyperplane (vector a
in a⋅x = b
) is shared with the original hyperplane if share == true
.
Algorithm
A hyperplane $a⋅x = b$ is transformed to the hyperplane $a⋅x = b + a⋅v$. In other words, we add the dot product $a⋅v$ to $b$.
Inherited from LazySet
: