Universe
LazySets.UniverseModule.Universe — TypeUniverse{N} <: AbstractPolyhedron{N}Type that represents the universal set, i.e., the set of all elements.
Fields
- dim– the ambient dimension of the set
Operations
LazySets.API.an_element — Methodan_element(X::LazySet)Return some element of a nonempty set.
Input
- X– set
Output
An element of X unless X is empty.
LazySets.API.an_element — MethodExtended help
an_element(U::Universe)Algorithm
The output is the origin.
LazySets.constrained_dimensions — Methodconstrained_dimensions(U::Universe)Return the indices in which a universe is constrained.
Input
- U– universe
Output
The empty vector, as the universe is unconstrained in every dimension.
Base.rand — Methodrand(T::Type{<:LazySet}; [N]::Type{<:Real}=Float64, [dim]::Int=2,
     [rng]::AbstractRNG=GLOBAL_RNG, [seed]::Union{Int, Nothing}=nothing
    )Create a random set of the given set type.
Input
- T– set type
- N– (optional, default:- Float64) numeric type
- dim– (optional, default: 2) dimension
- rng– (optional, default:- GLOBAL_RNG) random number generator
- seed– (optional, default:- nothing) seed for reseeding
Output
A random set of the given set type.
Base.rand — MethodExtended help
rand(::Type{Universe}; [N]::Type{<:Real}=Float64, [dim]::Int=2,
     [rng]::AbstractRNG=GLOBAL_RNG, [seed]::Union{Int, Nothing}=nothing)Output
The (only) universe of the given numeric type and dimension.
LazySets.API.ρ — Methodρ(d::AbstractVector, X::LazySet)Evaluate the support function of a set in a given direction.
Input
- d– direction
- X– set
Output
The evaluation of the support function of X in direction d.
Notes
The convenience alias support_function is also available.
We have the following identity based on the support vector $σ$:
\[ ρ(d, X) = d ⋅ σ(d, X)\]
LazySets.API.ρ — MethodExtended help
ρ(d::AbstractVector, U::Universe)Algorithm
If the direction is all zero, the result is zero. Otherwise, the result is Inf.
LazySets.API.σ — Methodσ(d::AbstractVector, X::LazySet)Compute a support vector of a set in a given direction.
Input
- d– direction
- X– set
Output
A support vector of X in direction d.
Notes
The convenience alias support_vector is also available.
LazySets.API.σ — MethodExtended help
σ(d::AbstractVector, U::Universe)Output
A vector with infinity values, except in dimensions where the direction is zero.
Undocumented implementations:
- complement
- constraints_list
- constraints
- copy(::Universe)
- diameter
- dim
- isbounded
- isboundedtype
- isempty
- isoperationtype
- isuniversal
- norm
- radius
- rectify
- reflect
- distance
- ∈
- linear_map
- permute
- project
- rationalize
- scale
- scale!
- translate
- translate!
- cartesian_product
- convex_hull
- distance
- intersection
Inherited from LazySet:
- concretize
- convex_hull
- eltype
- eltype
- isoperation
- ispolytopic
- polyhedron
- singleton_list
- tosimplehrep
- triangulate
- triangulate_faces
- affine_map
- exponential_map
- is_interior_point
- sample
- isapprox
- isdisjoint
- ⊆
- minkowski_difference
- exact_sum
- ==
- isequivalent
- ⊂
Inherited from ConvexSet:
Inherited from AbstractPolyhedron: