Sparse polynomial zonotope sets (AbstractSparsePolynomialZonotope)
LazySets.AbstractSparsePolynomialZonotope
— TypeAbstractSparsePolynomialZonotope{N} <: AbstractPolynomialZonotope{N}
Abstract type for sparse polynomial zonotope sets.
Notes
Every concrete AbstractSparsePolynomialZonotope
must define the following functions:
expmat(::AbstractSparsePolynomialZonotope)
– return the exponent matrix (sparse PZ only)genmat_dep(::AbstractSparsePolynomialZonotope)
– return the matrix of dependent generatorsgenmat_indep(::AbstractSparsePolynomialZonotope)
– return the matrix of independent generators
The subtypes of AbstractSparsePolynomialZonotope
(including abstract interfaces):
julia> subtypes(AbstractSparsePolynomialZonotope)
2-element Vector{Any}:
SimpleSparsePolynomialZonotope
SparsePolynomialZonotope
This interface requires to implement the following functions:
LazySets.expmat
— Methodexpmat(P::AbstractSparsePolynomialZonotope)
Return the matrix of exponents of a sparse polynomial zonotope.
Input
P
– sparse polynomial zonotope
Output
The matrix of exponents, where each column is a multidegree.
Notes
In the exponent matrix, each row corresponds to a parameter ($αₖ$ in the definition) and each column corresponds to a monomial.
LazySets.genmat_dep
— Methodgenmat_dep(P::AbstractSparsePolynomialZonotope)
Return the matrix of dependent generators of a sparse polynomial zonotope.
Input
P
– sparse polynomial zonotope
Output
The matrix of dependent generators.
LazySets.genmat_indep
— Methodgenmat_indep(P::AbstractSparsePolynomialZonotope)
Return the matrix of independent generators of a sparse polynomial zonotope.
Input
P
– sparse polynomial zonotope
Output
The matrix of independent generators.
This interface defines the following functions:
LazySets.nparams
— Methodnparams(P::AbstractSparsePolynomialZonotope)
Return the number of dependent parameters in the polynomial representation of a sparse polynomial zonotope.
Input
P
– sparse polynomial zonotope
Output
The number of dependent parameters in the polynomial representation.
Notes
This number corresponds to the number of rows in the exponent matrix.