Norm Overapproximation
LazySets.Approximations.overapproximate_norm — Functionoverapproximate_norm(Z::AbstractZonotope, [p]::Real=1)Compute an upper bound on the $p$-norm of a zonotopic set.
Input
Z– Zonotopic setp– (optional, default:1) norm
Output
An upper bound on $\max_{x ∈ Z} ‖x‖_p$.
Notes
The norm of a set is the norm of the enclosing ball (of the given $p$-norm) of minimal volume that is centered in the origin.
overapproximate_norm(MZ::MatrixZonotope, [p]::Real=Inf)Compute an upper bound on the $p$-norm of a matrix zonotope.
Input
MZ– Matrix zonotopep– (optional, default:Inf) norm
Output
An upper bound on $\sup_{A ∈ \mathcal{A} } ‖A‖_p$.
overapproximate_norm(MZP::MatrixZonotopeProduct, [p]::Real=Inf)Compute an upper bound on the $p$-norm of a product of matrix zonotopes.
Input
MZP– Matrix zonotope productp– (optional, default:Inf) norm
Output
An upper bound on $\sup_{M ∈ \mathcal{A*B*…} } \|M\|_p$.
LazySets.Approximations._overapproximate_l1_norm — Function_overapproximate_l1_norm(Z::AbstractZonotope{N}) where {N}Compute an upper bound on the 1-norm of a zonotopic set.
Notes
The problem $\max_{z ∈ Z} ‖z‖_1$ is NP-hard in general.
Algorithm
This method computes a convex relaxation by combining the MILP formulation described in Jordan and Dimakis [JD21], Theorem 5 with the convex-hull construction in the supplement section §C.3. We replace each coordinate's absolute value
\[|z_i|\quad z_i ∈ [ℓ_i, u_i]\]
by its convex-hull secant upper envelope: the line through the two points $((ℓ_i,|ℓ_i|)$ and $((u_i,|u_i|)$. This yields a linear-programming relaxation of complexity (O(p·n)), where p is the number of generators and n the ambient dimension.