Overapproximation
LazySets.Approximations.taylor_expmap_truncation — Functiontaylor_expmap_truncation(A::MatrixZonotope, P::S, k::Int)
where {S<:Union{SparsePolynomialZonotope,AbstractZonotope}}Compute the k-th order truncated Taylor expansion of the exponential map of a matrix zonotope
Input
A– a matrix zonotopeP– a (potentially polynomial) zonotopic setk– the order of the Taylor expansion
Output
A (polynomial) zonotopic set representing the k-th order truncated Taylor expansion.
Algorithm
This function computes the approximation:
\[\displaystyle\boxplus_{i=0}^k \frac{\mathcal{A}^i }{i!} X\]
taylor_expmap_truncation(MZP::MatrixZonotopeProduct, P::S, k::Int)
where {S<:Union{SparsePolynomialZonotope,AbstractZonotope}}Compute the k-th order truncated Taylor expansion of the exponential map of a matrix zonotope product
Input
MZP– a matrix zonotope productP– a (potentially polynomial) zonotopic setk– the order of the Taylor expansion
Output
A (potentially polynomial) zonotopic set representing the k-th order truncated Taylor expansion.
Algorithm
This function computes the approximation:
\[\displaystyle\boxplus_{i=0}^k \frac{\mathcal{A}^i \mathcal{B}^i}{i!} P\]
LazySets.Approximations.taylor_expmap_remainder — Functiontaylor_expmap_remainder(Z::AbstractZonotope{N}, matnorm::Real, Int) where {N}Overapproximate the Lagrange remainder term of the k-th order truncated Taylor expansion of the exponential map of a matrix zonotope applied to a zonotopic set.
Input
P– a zonotopic setmatnorm– an upper bound on the norm of the matrix zonotopek– the order of the Taylor expansion
Output
A zonotope over-approximating the remainder term of the Taylor expansion.
LazySets.Approximations._compute_inner_powers — Function_compute_inner_powers(B::MatrixZonotope, P::S,
k::Int) where {S<:Union{SparsePolynomialZonotope,
AbstractZonotope}}Compute the first k powers of the matrix zonotope B applied to the set P.
This function returns a vector of overapproximated sets of the form:
\[ (1/i!) * \mathcal{B}^i * P\]
for i = 0 to k.
LazySets.Approximations._compute_outer_powers — Function_compute_outer_powers(A::MatrixZonotope, in_powers::Vector{S},
k::Int) where {S<:Union{SparsePolynomialZonotope,
AbstractZonotope}}Apply A repeatedly to each element in in_powers, approximating:
\[A^i * (B^i * P)\]
for i = 0 to k.