Overapproximation
LazySets.Approximations.taylor_expmap_truncation
— Functiontaylor_expmap_truncation(A::MatrixZonotope, P::S, k::Int)
where {S<:Union{SparsePolynomialZonotope,AbstractZonotope}}
Compute the k-th order truncated Taylor expansion of the exponential map of a matrix zonotope
Input
A
– a matrix zonotopeP
– a (potentially polynomial) zonotopic setk
– the order of the Taylor expansion
Output
A (polynomial) zonotopic set representing the k-th order truncated Taylor expansion.
Algorithm
This function computes the approximation:
\[\displaystyle\boxplus_{i=0}^k \frac{\mathcal{A}^i }{i!} X\]
taylor_expmap_truncation(MZP::MatrixZonotopeProduct, P::S, k::Int)
where {S<:Union{SparsePolynomialZonotope,AbstractZonotope}}
Compute the k-th order truncated Taylor expansion of the exponential map of a matrix zonotope product
Input
MZP
– a matrix zonotope productP
– a (potentially polynomial) zonotopic setk
– the order of the Taylor expansion
Output
A (potentially polynomial) zonotopic set representing the k-th order truncated Taylor expansion.
Algorithm
This function computes the approximation:
\[\displaystyle\boxplus_{i=0}^k \frac{\mathcal{A}^i \mathcal{B}^i}{i!} P\]
LazySets.Approximations.taylor_expmap_remainder
— Functiontaylor_expmap_remainder(Z::AbstractZonotope{N}, matnorm::Real, Int) where {N}
Overapproximate the Lagrange remainder term of the k-th order truncated Taylor expansion of the exponential map of a matrix zonotope applied to a zonotopic set.
Input
P
– a zonotopic setmatnorm
– an upper bound on the norm of the matrix zonotopek
– the order of the Taylor expansion
Output
A zonotope over-approximating the remainder term of the Taylor expansion.
LazySets.Approximations._compute_inner_powers
— Function_compute_inner_powers(B::MatrixZonotope, P::S,
k::Int) where {S<:Union{SparsePolynomialZonotope,
AbstractZonotope}}
Compute the first k
powers of the matrix zonotope B
applied to the set P
.
This function returns a vector of overapproximated sets of the form:
\[ (1/i!) * \mathcal{B}^i * P\]
for i = 0
to k
.
LazySets.Approximations._compute_outer_powers
— Function_compute_outer_powers(A::MatrixZonotope, in_powers::Vector{S},
k::Int) where {S<:Union{SparsePolynomialZonotope,
AbstractZonotope}}
Apply A
repeatedly to each element in in_powers
, approximating:
\[A^i * (B^i * P)\]
for i = 0
to k
.