Universe
LazySets.UniverseModule.Universe — Type
Universe{N} <: AbstractPolyhedron{N}Type that represents the universal set, i.e., the set of all elements.
Fields
dim– the ambient dimension of the set
Operations
LazySets.API.an_element — Method
an_element(X::LazySet)Return some element of a nonempty set.
Input
X– set
Output
An element of X unless X is empty.
LazySets.API.an_element — Method
LazySets.constrained_dimensions — Method
constrained_dimensions(U::Universe)Return the indices in which a universe is constrained.
Input
U– universe
Output
The empty vector, as the universe is unconstrained in every dimension.
sourceBase.rand — Method
rand(T::Type{<:LazySet}; [N]::Type{<:Real}=Float64, [dim]::Int=2,
[rng]::AbstractRNG=GLOBAL_RNG, [seed]::Union{Int, Nothing}=nothing
)Create a random set of the given set type.
Input
T– set typeN– (optional, default:Float64) numeric typedim– (optional, default: 2) dimensionrng– (optional, default:GLOBAL_RNG) random number generatorseed– (optional, default:nothing) seed for reseeding
Output
A random set of the given set type.
sourceLazySets.API.ρ — Method
ρ(d::AbstractVector, X::LazySet)Evaluate the support function of a set in a given direction.
Input
d– directionX– set
Output
The evaluation of the support function of X in direction d.
Notes
The convenience alias support_function is also available.
We have the following identity based on the support vector $σ$:
\[ ρ(d, X) = d ⋅ σ(d, X)\]
sourceLazySets.API.ρ — Method
Extended help
ρ(d::AbstractVector, U::Universe)Algorithm
If the direction is all zero, the result is zero. Otherwise, the result is Inf.
LazySets.API.σ — Method
σ(d::AbstractVector, X::LazySet)Compute a support vector of a set in a given direction.
Input
d– directionX– set
Output
A support vector of X in direction d.
Notes
The convenience alias support_vector is also available.
LazySets.API.σ — Method
Extended help
σ(d::AbstractVector, U::Universe)Output
A vector with infinity values, except in dimensions where the direction is zero.
sourceUndocumented implementations:
complementconstraints_listconstraintscopy(::Universe)diameterdimisboundedisboundedtypeisemptyisoperationtypeisuniversalnormradiusrectifyreflectdistance∈linear_mappermuteprojectrationalizescalescale!translatetranslate!cartesian_productconvex_hulldistanceintersection
Inherited from LazySet:
concretizeconvex_hulleltypeeltypeisoperationispolytopicpolyhedronsingleton_listtosimplehreptriangulatetriangulate_facesaffine_mapexponential_mapis_interior_pointsampleisapproxisdisjoint⊆minkowski_differenceexact_sum==isequivalent⊂
Inherited from ConvexSet:
Inherited from AbstractPolyhedron: