Universe
LazySets.UniverseModule.Universe
— TypeUniverse{N} <: AbstractPolyhedron{N}
Type that represents the universal set, i.e., the set of all elements.
Fields
dim
– the ambient dimension of the set
Operations
LazySets.API.an_element
— Methodan_element(X::LazySet)
Return some element of a nonempty set.
Input
X
– set
Output
An element of X
unless X
is empty.
LazySets.API.an_element
— MethodExtended help
an_element(U::Universe)
Algorithm
The output is the origin.
LazySets.constrained_dimensions
— Methodconstrained_dimensions(U::Universe)
Return the indices in which a universe is constrained.
Input
U
– universe
Output
The empty vector, as the universe is unconstrained in every dimension.
Base.rand
— Methodrand(T::Type{<:LazySet}; [N]::Type{<:Real}=Float64, [dim]::Int=2,
[rng]::AbstractRNG=GLOBAL_RNG, [seed]::Union{Int, Nothing}=nothing
)
Create a random set of the given set type.
Input
T
– set typeN
– (optional, default:Float64
) numeric typedim
– (optional, default: 2) dimensionrng
– (optional, default:GLOBAL_RNG
) random number generatorseed
– (optional, default:nothing
) seed for reseeding
Output
A random set of the given set type.
Base.rand
— MethodExtended help
rand(::Type{Universe}; [N]::Type{<:Real}=Float64, [dim]::Int=2,
[rng]::AbstractRNG=GLOBAL_RNG, [seed]::Union{Int, Nothing}=nothing)
Output
The (only) universe of the given numeric type and dimension.
LazySets.API.ρ
— Methodρ(d::AbstractVector, X::LazySet)
Evaluate the support function of a set in a given direction.
Input
d
– directionX
– set
Output
The evaluation of the support function of X
in direction d
.
Notes
A convenience alias support_function
is also available.
We have the following identity based on the support vector $σ$:
\[ ρ(d, X) = d ⋅ σ(d, X)\]
LazySets.API.ρ
— MethodExtended help
ρ(d::AbstractVector, U::Universe)
Algorithm
If the direction is all zero, the result is zero. Otherwise, the result is Inf
.
LazySets.API.σ
— Methodσ(d::AbstractVector, X::LazySet)
Compute a support vector of a set in a given direction.
Input
d
– directionX
– set
Output
A support vector of X
in direction d
.
Notes
A convenience alias support_vector
is also available.
LazySets.API.σ
— MethodExtended help
σ(d::AbstractVector, U::Universe)
Output
A vector with infinity values, except in dimensions where the direction is zero.
Undocumented implementations:
complement
constraints_list
constraints
copy(::Universe)
diameter
dim
isbounded
isboundedtype
isempty
isoperationtype
isuniversal
norm
radius
reflect
∈
permute
project
scale
scale!
translate
translate!
cartesian_product
intersection
Inherited from LazySet
:
area
chebyshev_center_radius
concretize
convex_hull
eltype
eltype
isoperation
rationalize
rectify
singleton_list
surface
triangulate
affine_map
exponential_map
is_interior_point
linear_map
sample
convex_hull
≈
isdisjoint
⊆
minkowski_difference
exact_sum
==
isequivalent
⊂
Inherited from ConvexSet
:
Inherited from AbstractPolyhedron
: