Star
LazySets.StarModule.Star
— TypeStar{N, VN<:AbstractVector{N}, MN<:AbstractMatrix{N}, PT<:AbstractPolyhedron{N}} <: AbstractPolyhedron{N}
Generalized star set with a polyhedral predicate, i.e.
\[X = \{x ∈ ℝ^n : x = x₀ + ∑_{i=1}^m α_i v_i,~~\textrm{s.t. } P(α) = ⊤ \},\]
where $x₀ ∈ ℝ^n$ is the center, the $m$ vectors $v₁, …, vₘ$ form the basis of the star set, and the combination factors $α = (α₁, …, αₘ) ∈ ℝ^m$ are the predicate's decision variables, i.e., $P : α ∈ ℝ^m → \{⊤, ⊥\}$ where the polyhedral predicate satisfies $P(α) = ⊤$ if and only if $A·α ≤ b$ for some fixed $A ∈ ℝ^{p × m}$ and $b ∈ ℝ^p$.
Fields
c
– vector that represents the centerV
– matrix where each column corresponds to a basis vectorP
– polyhedral set that represents the predicate
Notes
The predicate function is implemented as a conjunction of linear constraints, i.e., a subtype of AbstractPolyhedron
. By a slight abuse of notation, the predicate is also used to denote the subset of $ℝ^n$ such that $P(α) = ⊤$ holds.
The $m$ basis vectors (each one $n$-dimensional) are stored as the columns of an $n × m$ matrix.
We remark that a Star
is mathematically equivalent to the affine map of the polyhedral set P
, with the transformation matrix and translation vector being V
and c
, respectively.
Examples
This example is drawn from Example 1 in [2]. Consider the two-dimensional plane $ℝ^2$. Let
julia> V = [[1.0, 0.0], [0.0, 1.0]];
be the basis vectors and take
julia> c = [3.0, 3.0];
as the center of the star set. Let the predicate be the infinity-norm ball of radius 1,
julia> P = BallInf(zeros(2), 1.0);
We construct the star set $X = ⟨c, V, P⟩$ as follows:
julia> S = Star(c, V, P)
Star{Float64, Vector{Float64}, Matrix{Float64}, BallInf{Float64, Vector{Float64}}}([3.0, 3.0], [1.0 0.0; 0.0 1.0], BallInf{Float64, Vector{Float64}}([0.0, 0.0], 1.0))
We can use getter functions for each component field:
julia> center(S)
2-element Vector{Float64}:
3.0
3.0
julia> basis(S)
2×2 Matrix{Float64}:
1.0 0.0
0.0 1.0
julia> predicate(S)
BallInf{Float64, Vector{Float64}}([0.0, 0.0], 1.0)
In this case, the generalized star $S$ above is equivalent to the rectangle $T$ below.
\[ T = \{(x, y) ∈ ℝ^2 : (2 ≤ x ≤ 4) ∧ (2 ≤ y ≤ 4) \}\]
References
Star sets as defined here were introduced in [1]; see also [2] for a preliminary definition. For applications in reachability analysis of neural networks, see [3].
[1] Duggirala, P. S., and Mahesh V. Parsimonious, simulation based verification of linear systems. International Conference on Computer Aided Verification. Springer, Cham, 2016.
[2] Bak S, Duggirala PS. Simulation-equivalent reachability of large linear systems with inputs. In International Conference on Computer Aided Verification 2017 Jul 24 (pp. 401-420). Springer, Cham.
[3] Tran, H. D., Lopez, D. M., Musau, P., Yang, X., Nguyen, L. V., Xiang, W., & Johnson, T. T. (2019, October). Star-based reachability analysis of deep neural networks. In International Symposium on Formal Methods (pp. 670-686). Springer, Cham.
Conversion
convert(::Type{Star}, ::AbstractPolyhedron)
Operations
LazySets.API.an_element
— Methodan_element(X::LazySet)
Return some element of a nonempty set.
Input
X
– set
Output
An element of X
unless X
is empty.
LazySets.API.an_element
— MethodExtended help
an_element(X::Star)
Algorithm
We apply the affine map to the result of an_element
on the predicate.
LazySets.StarModule.basis
— Methodbasis(X::Star)
Return the basis vectors of a star.
Input
X
– star
Output
A matrix where each column is a basis vector of the star.
LazySets.API.constraints_list
— Methodconstraints_list(X::LazySet)
Compute a list of linear constraints of a polyhedral set.
Input
X
– polyhedral set
Output
A list of the linear constraints of X
.
LazySets.API.constraints_list
— MethodLazySets.API.isbounded
— Methodisbounded(X::LazySet)
Check whether a set is bounded.
Input
X
– set
Output
true
iff the set is bounded.
Notes
See also isboundedtype(::Type{<:LazySet})
.
LazySets.API.isbounded
— MethodExtended help
isbounded(X::Star; cond_tol::Number=DEFAULT_COND_TOL)
Algorithm
LazySets.StarModule.predicate
— Methodpredicate(X::Star)
Return the predicate of a star.
Input
X
– star
Output
A polyhedral set representing the predicate of the star.
Base.rand
— Methodrand(T::Type{<:LazySet}; [N]::Type{<:Real}=Float64, [dim]::Int=2,
[rng]::AbstractRNG=GLOBAL_RNG, [seed]::Union{Int, Nothing}=nothing
)
Create a random set of the given set type.
Input
T
– set typeN
– (optional, default:Float64
) numeric typedim
– (optional, default: 2) dimensionrng
– (optional, default:GLOBAL_RNG
) random number generatorseed
– (optional, default:nothing
) seed for reseeding
Output
A random set of the given set type.
Base.rand
— MethodExtended help
rand(::Type{Star}; [N]::Type{<:Real}=Float64, [dim]::Int=2,
[rng]::AbstractRNG=GLOBAL_RNG, [seed]::Union{Int, Nothing}=nothing)
Algorithm
A predicate P
can be passed directly. If P
is nothing
(default), we generate a random HPolytope
of dimension dim
.
All numbers are normally distributed with mean 0 and standard deviation 1.
Base.:∈
— Method∈(x::AbstractVector, X::LazySet)
Check whether a point lies in a set.
Input
x
– point/vectorX
– set
Output
true
iff $x ∈ X$.
Base.:∈
— MethodExtended help
∈(v::AbstractVector, X::Star)
Algorithm
Undocumented implementations:
Inherited from LazySet
:
area
complement
concretize
constraints
convex_hull
copy(::Type{LazySet})
diameter
eltype
eltype
isboundedtype
isoperation
norm
radius
rectify
reflect
singleton_list
surface
vertices
volume
exponential_map
is_interior_point
sample
scale
translate
cartesian_product
convex_hull
exact_sum
≈
==
isequivalent
⊂
minkowski_difference
Inherited from ConvexSet
:
Inherited from AbstractPolyhedron
: