Line
LazySets.LineModule.Line — TypeLine{N, VN<:AbstractVector{N}} <: AbstractPolyhedron{N}Type that represents a line of the form
\[ \{y ∈ ℝ^n: y = p + λd, λ ∈ ℝ\}\]
where $p$ is a point on the line and $d$ is its direction vector (not necessarily normalized).
Fields
p– point on the lined– direction
Examples
There are three constructors. The optional keyword argument normalize (default: false) can be used to normalize the direction of the resulting line to have norm 1 (w.r.t. the Euclidean norm).
- The default constructor takes the fields
pandd:
The line passing through the point $[-1, 2, 3]$ and parallel to the vector $[3, 0, -1]$:
julia> Line([-1.0, 2, 3], [3.0, 0, -1])
Line{Float64, Vector{Float64}}([-1.0, 2.0, 3.0], [3.0, 0.0, -1.0])
julia> Line([-1.0, 2, 3], [3.0, 0, -1]; normalize=true)
Line{Float64, Vector{Float64}}([-1.0, 2.0, 3.0], [0.9486832980505138, 0.0, -0.31622776601683794])- The second constructor takes two points,
fromandto, as keyword
arguments, and returns the line through them. See the algorithm section for details.
julia> Line(from=[-1.0, 2, 3], to=[2.0, 2, 2])
Line{Float64, Vector{Float64}}([-1.0, 2.0, 3.0], [3.0, 0.0, -1.0])- The third constructor resembles
Line2Dand only works for two-dimensional
lines. It takes two inputs, a and b, and constructs the line such that $a ⋅ x = b$.
julia> Line([2.0, 0], 1.)
Line{Float64, Vector{Float64}}([0.5, 0.0], [0.0, 1.0])Algorithm
Given two points $p ∈ ℝ^n$ and $q ∈ ℝ^n$, the line that passes through these two points is L:{y ∈ ℝ^n: y = p + λ(q - p), λ ∈ ℝ}``.
Operations
LazySets.API.constraints_list — Methodconstraints_list(X::LazySet)Compute a list of linear constraints of a polyhedral set.
Input
X– polyhedral set
Output
A list of the linear constraints of X.
LazySets.API.constraints_list — MethodExtended help
constraints_list(L::Line)Output
A list containing 2n-2 half-spaces whose intersection is L, where n is the ambient dimension of L.
LazySets.LineModule.direction — Methoddirection(L::Line)Return the direction of the line.
Input
L– line
Output
The direction of the line.
Notes
The direction is not necessarily normalized. See normalize(::Line, ::Real) / normalize!(::Line, ::Real).
LazySets.API.isuniversal — Methodisuniversal(X::LazySet, witness::Bool=false)Check whether a set is universal.
Input
X– setwitness– (optional, default:false) compute a witness if activated
Output
- If the
witnessoption is deactivated:trueiff $X = ℝ^n$ - If the
witnessoption is activated:(true, [])iff $X = ℝ^n$(false, v)iff $X ≠ ℝ^n$ for some $v ∉ X$
LazySets.API.isuniversal — MethodExtended help
isuniversal(L::Line; [witness::Bool]=false)Algorithm
- If
witnessisfalse, the result istrueif the ambient dimension is one,
and false otherwise.
- If
witnessistrue, the result is(true, [])if the ambient dimension is
one, and (false, v) where $v ∉ P$ otherwise.
LinearAlgebra.normalize — Methodnormalize(L::Line{N}, p::Real=N(2)) where {N}Normalize the direction of a line.
Input
L– linep– (optional, default:2.0) vectorp-norm used in the normalization
Output
A line whose direction has unit norm w.r.t. the given p-norm.
Notes
See also normalize!(::Line, ::Real) for the in-place version.
LinearAlgebra.normalize! — Methodnormalize!(L::Line{N}, p::Real=N(2)) where {N}Normalize the direction of a line storing the result in L.
Input
L– linep– (optional, default:2.0) vectorp-norm used in the normalization
Output
A line whose direction has unit norm w.r.t. the given p-norm.
Base.rand — Methodrand(T::Type{<:LazySet}; [N]::Type{<:Real}=Float64, [dim]::Int=2,
[rng]::AbstractRNG=GLOBAL_RNG, [seed]::Union{Int, Nothing}=nothing
)Create a random set of the given set type.
Input
T– set typeN– (optional, default:Float64) numeric typedim– (optional, default: 2) dimensionrng– (optional, default:GLOBAL_RNG) random number generatorseed– (optional, default:nothing) seed for reseeding
Output
A random set of the given set type.
Base.rand — MethodExtended help
rand(::Type{Line}; [N]::Type{<:Real}=Float64, [dim]::Int=2,
[rng]::AbstractRNG=GLOBAL_RNG, [seed]::Union{Int, Nothing}=nothing)Algorithm
All numbers are normally distributed with mean 0 and standard deviation 1.
Base.:∈ — Method∈(x::AbstractVector, X::LazySet)Check whether a point lies in a set.
Input
x– point/vectorX– set
Output
true iff $x ∈ X$.
Base.:∈ — MethodExtended help
∈(x::AbstractVector, L::Line)Algorithm
The point $x$ belongs to the line $L : p + λd$ if and only if $x - p$ is proportional to the direction $d$.
LazySets.API.linear_map — Methodlinear_map(M::AbstractMatrix, X::LazySet)Compute the linear map $M · X$.
Input
M– matrixX– set
Output
A set representing the linear map $M · X$.
LazySets.API.linear_map — MethodExtended help
linear_map(M::AbstractMatrix, L::Line)Output
The line obtained by applying the linear map, if that still results in a line, or a Singleton otherwise.
Algorithm
We apply the linear map to the point and direction of L. If the resulting direction is zero, the result is a singleton.
Undocumented implementations:
Inherited from LazySet:
areachebyshev_center_radiuscomplementconcretizeconstraintsconvex_hullcopy(::Type{LazySet})diametereltypeeltypeisboundedtypeisoperationispolytopicnormpolyhedronradiusrationalizerectifyreflectsingleton_listtosimplehreptriangulatetriangulate_facesverticesaffine_mapexponential_mapis_interior_pointsamplescaletranslatecartesian_productconvex_hullexact_sumisapprox==isequivalent⊂minkowski_difference
Inherited from ConvexSet:
Inherited from AbstractPolyhedron: