Hyperplane
LazySets.HyperplaneModule.Hyperplane
— TypeHyperplane{N, VN<:AbstractVector{N}} <: AbstractPolyhedron{N}
Type that represents a hyperplane of the form $a⋅x = b$.
Fields
a
– normal direction (non-zero)b
– constraint
Examples
The plane $y = 0$:
julia> Hyperplane([0, 1.], 0.)
Hyperplane{Float64, Vector{Float64}}([0.0, 1.0], 0.0)
Conversion
The following method requires the SymEngine
package.
Base.convert
— Methodconvert(::Type{Hyperplane{N}}, expr::Expr; vars=Vector{Basic}=Basic[]) where {N}
Return a LazySet.Hyperplane
given a symbolic expression that represents a hyperplane.
Input
expr
– a symbolic expressionvars
– (optional, default:Basic[]
): set of variables with respect to which the gradient is taken; if empty, we take the free symbols in the given expression
Output
A Hyperplane
, in the form ax = b
.
Examples
julia> convert(Hyperplane, :(x1 = -0.03))
Hyperplane{Float64, Vector{Float64}}([1.0], -0.03)
julia> convert(Hyperplane, :(x1 + 0.03 = 0))
Hyperplane{Float64, Vector{Float64}}([1.0], -0.03)
julia> convert(Hyperplane, :(x1 + x2 = 2*x4 + 6))
Hyperplane{Float64, Vector{Float64}}([1.0, 1.0, -2.0], 6.0)
You can also specify the set of "ambient" variables in the hyperplane, even if not all of them appear:
julia> using SymEngine: Basic
julia> convert(Hyperplane, :(x1 + x2 = 2*x4 + 6), vars=Basic[:x1, :x2, :x3, :x4])
Hyperplane{Float64, Vector{Float64}}([1.0, 1.0, 0.0, -2.0], 6.0)
Operations
LazySets.API.an_element
— Methodan_element(X::LazySet)
Return some element of a nonempty set.
Input
X
– set
Output
An element of X
unless X
is empty.
LazySets.API.an_element
— MethodExtended help
an_element(H::Hyperplane)
Algorithm
We compute a point on the hyperplane $a⋅x = b$ as follows:
- We first find a nonzero entry of $a$ in dimension, say, $i$.
- We set $x[i] = b / a[i]$.
- We set $x[j] = 0$ for all $j ≠ i$.
LazySets.constrained_dimensions
— Methodconstrained_dimensions(H::Hyperplane)
Return the dimensions in which a hyperplane is constrained.
Input
H
– hyperplane
Output
A vector of ascending indices i
such that the hyperplane is constrained in dimension i
.
Examples
A 2D hyperplane with constraint $x_1 = 0$ is constrained in dimension 1 only.
LazySets.API.isbounded
— Methodisbounded(X::LazySet)
Check whether a set is bounded.
Input
X
– set
Output
true
iff the set is bounded.
Notes
See also isboundedtype(::Type{<:LazySet})
.
LazySets.API.isbounded
— MethodExtended help
isbounded(H::Hyperplane)
Algorithm
The result is true
iff H
is one-dimensional.
LazySets.API.isuniversal
— Methodisuniversal(X::LazySet, witness::Bool=false)
Check whether a set is universal.
Input
X
– setwitness
– (optional, default:false
) compute a witness if activated
Output
- If the
witness
option is deactivated:true
iff $X = ℝ^n$ - If the
witness
option is activated:(true, [])
iff $X = ℝ^n$(false, v)
iff $X ≠ ℝ^n$ for some $v ∉ X$
LazySets.API.isuniversal
— FunctionExtended help
isuniversal(H::Hyperplane, [witness]::Bool=false)
Algorithm
A witness is produced by adding the normal vector to an element on the hyperplane.
LinearAlgebra.normalize
— Methodnormalize(H::Hyperplane{N}, p::Real=N(2)) where {N}
Normalize a hyperplane.
Input
H
– hyperplanep
– (optional, default:2
) norm
Output
A new hyperplane whose normal direction $a$ is normalized, i.e., such that $‖a‖_p = 1$ holds.
Base.rand
— Methodrand(T::Type{<:LazySet}; [N]::Type{<:Real}=Float64, [dim]::Int=2,
[rng]::AbstractRNG=GLOBAL_RNG, [seed]::Union{Int, Nothing}=nothing
)
Create a random set of the given set type.
Input
T
– set typeN
– (optional, default:Float64
) numeric typedim
– (optional, default: 2) dimensionrng
– (optional, default:GLOBAL_RNG
) random number generatorseed
– (optional, default:nothing
) seed for reseeding
Output
A random set of the given set type.
Base.rand
— MethodExtended help
rand(::Type{Hyperplane}; [N]::Type{<:Real}=Float64, [dim]::Int=2,
[rng]::AbstractRNG=GLOBAL_RNG, [seed]::Union{Int, Nothing}=nothing)
Algorithm
All numbers are normally distributed with mean 0 and standard deviation 1. Additionally, the constraint a
is nonzero.
ReachabilityBase.Arrays.distance
— Methoddistance(x::AbstractVector, H::Hyperplane)
Compute the distance between point x
and hyperplane H
with respect to the Euclidean norm.
Input
x
– vectorH
– hyperplane
Output
A scalar representing the distance between point x
and hyperplane H
.
Base.:∈
— Method∈(x::AbstractVector, X::LazySet)
Check whether a point lies in a set.
Input
x
– point/vectorX
– set
Output
true
iff $x ∈ X$.
Base.:∈
— MethodExtended help
∈(x::AbstractVector, H::Hyperplane)
Algorithm
We just check whether $x$ satisfies $a⋅x = b$.
LazySets.API.project
— Methodproject(x::AbstractVector, H::Hyperplane)
Project a point onto a hyperplane.
Input
x
– pointH
– hyperplane
Output
The projection of x
onto H
.
Algorithm
The projection of $x$ onto the hyperplane of the form $a⋅x = b$ is
\[ x - \dfrac{a (a⋅x - b)}{‖a‖²}\]
LazySets.API.reflect
— Methodreflect(x::AbstractVector, H::Hyperplane)
Reflect (mirror) a vector in a hyperplane.
Input
x
– point/vectorH
– hyperplane
Output
The reflection of x
in H
.
Algorithm
The reflection of a point $x$ in the hyperplane $a ⋅ x = b$ is
\[ x − 2 \frac{x ⋅ a − b}{a ⋅ a} a\]
where $u · v$ denotes the dot product.
LazySets.API.ρ
— Methodρ(d::AbstractVector, X::LazySet)
Evaluate the support function of a set in a given direction.
Input
d
– directionX
– set
Output
The evaluation of the support function of X
in direction d
.
Notes
A convenience alias support_function
is also available.
We have the following identity based on the support vector $σ$:
\[ ρ(d, X) = d ⋅ σ(d, X)\]
LazySets.API.ρ
— MethodExtended help
ρ(d::AbstractVector, H::Hyperplane)
Output
If the set is unbounded in the given direction, the result is Inf
.
LazySets.API.σ
— Methodσ(d::AbstractVector, X::LazySet)
Compute a support vector of a set in a given direction.
Input
d
– directionX
– set
Output
A support vector of X
in direction d
.
Notes
A convenience alias support_vector
is also available.
LazySets.API.σ
— MethodExtended help
σ(d::AbstractVector, H::Hyperplane)
Output
A support vector in the given direction, which is only defined in the following two cases:
- The direction has norm zero.
- The direction is the hyperplane's normal direction or its opposite direction.
In all cases, any point on the hyperplane is a solution. Otherwise this function throws an error.
LazySets.API.translate
— Methodtranslate(X::LazySet, v::AbstractVector)
Compute the translation of a set with a vector.
Input
X
– setv
– vector
Output
A set representing $X + \{v\}$.
LazySets.API.translate
— MethodExtended help
translate(H::Hyperplane, v::AbstractVector; share::Bool=false)
Notes
The normal vector of the hyperplane (vector $a$ in $a⋅x = b$) is shared with the original hyperplane if share == true
.
Algorithm
A hyperplane $a⋅x = b$ is transformed to the hyperplane $a⋅x = b + a⋅v$. In other words, we add the dot product $a⋅v$ to $b$.
LazySets._ishyperplanar
— Function_ishyperplanar(expr::Expr)
Determine whether the given expression corresponds to a hyperplane.
Input
expr
– a symbolic expression
Output
true
if expr
corresponds to a half-space or false
otherwise.
Examples
julia> using LazySets: _ishyperplanar
julia> _ishyperplanar(:(x1 = 0))
true
julia> _ishyperplanar(:(x1 <= 0))
false
julia> _ishyperplanar(:(2*x1 = 4))
true
julia> _ishyperplanar(:(6.1 = 5.3*f - 0.1*g))
true
julia> _ishyperplanar(:(2*x1^2 = 4))
false
julia> _ishyperplanar(:(x1^2 = 4*x2 - x3))
false
julia> _ishyperplanar(:(x1 = 4*x2 - x3))
true
Undocumented implementations:
Inherited from LazySet
:
area
complement
concretize
constraints
convex_hull
copy(::Type{LazySet})
diameter
eltype
eltype
isboundedtype
isoperation
norm
radius
rectify
reflect
singleton_list
surface
vertices
affine_map
exponential_map
is_interior_point
linear_map
sample
scale
cartesian_product
convex_hull
exact_sum
≈
==
isequivalent
⊂
minkowski_difference
Inherited from ConvexSet
:
Inherited from AbstractPolyhedron
: