Convex sets (ConvexSet)
Every convex set in this library implements this interface.
LazySets.ConvexSet — TypeConvexSet{N} <: LazySet{N}Abstract type for convex sets, i.e., sets characterized by a (possibly infinite) intersection of halfspaces, or equivalently, sets $S$ such that for any two elements $x, y ∈ S$ and $0 ≤ λ ≤ 1$ it holds that $λ·x + (1-λ)·y ∈ S$.
Notes
Every concrete ConvexSet must define the following function:
σ(::AbstractVector, ::LazySet)– return a support vector in the given direction
This interface requires to implement the following function:
LazySets.API.σ — Methodσ(d::AbstractVector, X::LazySet)Compute a support vector of a set in a given direction.
Input
d– directionX– set
Output
A support vector of X in direction d.
Notes
The convenience alias support_vector is also available.
This interface defines the following functions (undocumented):
Inherited from LazySet:
an_elementareachebyshev_center_radiuscomplementconcretizeconstraintsconvex_hullcopy(::Type{LazySet})diametereltypeeltypeextremaextremahighhighisboundedisboundedtypeisemptyisoperationispolyhedralispolyhedraltypeispolytopiclowlownormpolyhedronradiusrationalizerectifyreflectsingleton_listtosimplehreptriangulatetriangulate_facesverticesaffine_mapexponential_mapis_interior_pointlinear_mapprojectsamplescaleρtranslatecartesian_productconvex_hullexact_sumisapproxisdisjoint==isequivalent⊂⊆minkowski_differenceminkowski_sum