Convex sets (ConvexSet)
Every convex set in this library implements this interface.
LazySets.ConvexSet
— TypeConvexSet{N} <: LazySet{N}
Abstract type for convex sets, i.e., sets characterized by a (possibly infinite) intersection of halfspaces, or equivalently, sets $S$ such that for any two elements $x, y ∈ S$ and $0 ≤ λ ≤ 1$ it holds that $λ·x + (1-λ)·y ∈ S$.
This interface defines the following functions (undocumented):
Inherited from LazySet
:
an_element
area
chebyshev_center_radius
complement
concretize
constraints
convex_hull
copy(::Type{LazySet})
delaunay
diameter
eltype
eltype
extrema
extrema
high
high
isbounded
isboundedtype
isempty
isoperation
ispolyhedral
low
low
norm
polyhedron
radius
rationalize
rectify
reflect
singleton_list
surface
tosimplehrep
triangulate
vertices
affine_map
exponential_map
is_interior_point
linear_map
project
sample
scale
ρ
translate
cartesian_product
convex_hull
exact_sum
≈
isdisjoint
==
isequivalent
⊂
⊆
minkowski_difference
minkowski_sum