Zonotopes (AbstractZonotope)
A zonotope is a specific centrally symmetric polytope characterized by a center and a collection of generators.
LazySets.AbstractZonotope — Type
AbstractZonotope{N} <: AbstractCentrallySymmetricPolytope{N}Abstract type for zonotopic sets.
Notes
Mathematically, a zonotope is defined as the set
\[Z = \left\{ c + ∑_{i=1}^p ξ_i g_i,~~ ξ_i ∈ [-1, 1]~~ ∀ i = 1,…, p \right\},\]
where $c ∈ ℝ^n$ is its center and $\{g_i\}_{i=1}^p$, $g_i ∈ ℝ^n$, is the set of generators. This characterization defines a zonotope as the finite Minkowski sum of line segments. Zonotopes can be equivalently described as the image of a unit infinity-norm ball in $ℝ^n$ by an affine transformation.
See Zonotope for a standard implementation of this interface.
Every concrete AbstractZonotope must define the following functions:
generators(::AbstractZonotope)– return an iterator over the generatorsgenmat(::AbstractZonotope)– return a generator matrix
Since the functions genmat and generators can be defined in terms of each other, it is sufficient to only genuinely implement one of them and let the implementation of the other function call the fallback implementation genmat_fallback resp. generators_fallback.
The subtypes of AbstractZonotope (including abstract interfaces):
julia> subtypes(AbstractZonotope)
5-element Vector{Any}:
AbstractHyperrectangle
HParallelotope
LineSegment
Zonotope
ZonotopeMDThis interface requires to implement the following functions:
LazySets.generators — Method
generators(Z::AbstractZonotope)Return an iterator over the generators of a zonotopic set.
Input
Z– zonotopic set
Output
An iterator over the generators of Z.
LazySets.genmat — Method
genmat(Z::AbstractZonotope)Return a generator matrix of a zonotopic set.
Input
Z– zonotopic set
Output
A generator matrix of Z.
This interface defines the following functions:
LazySets.API.constraints_list — Method
constraints_list(X::LazySet)Compute a list of linear constraints of a polyhedral set.
Input
X– polyhedral set
Output
A list of the linear constraints of X.
LazySets.API.constraints_list — Method
Extended help
constraints_list(P::AbstractZonotope)Algorithm
This is the (inefficient) fallback implementation for rational numbers. It first computes the vertices and then converts the corresponding polytope to constraint representation.
LazySets.API.constraints_list — Method
Extended help
constraints_list(Z::AbstractZonotope{<:AbstractFloat})Notes
The main algorithm assumes that the generator matrix is full rank. The result has $2 \binom{p}{n-1}$ (with $p$ being the number of generators and $n$ being the ambient dimension) constraints, which is optimal under this assumption. If this assumption is not given, the implementation tries to work around.
Algorithm
We follow the algorithm presented in Althoff et al. [ASB10]. Three cases are not covered by that algorithm, so we handle them separately. The first case is zonotopes in one dimension. The second case is that there are fewer generators than dimensions, $p < n$, or the generator matrix is not full rank, in which case we fall back to the (slower) computation based on the vertex representation. The third case is that the zonotope is flat in some dimensions, in which case we project the zonotope to the non-flat dimensions and extend the result later.
LazySets.ngens — Method
ngens(Z::AbstractZonotope)Return the number of generators of a zonotopic set.
Input
Z– zonotopic set
Output
An integer representing the number of generators.
LazySets.order — Method
order(Z::AbstractZonotope)Return the order of a zonotopic set.
Input
Z– zonotopic set
Output
A rational number representing the order of the zonotopic set.
Notes
The order of a zonotopic set is defined as the quotient of its number of generators and its dimension.
LazySets.API.reflect — Method
reflect(X::LazySet)Compute the reflection of a set in the origin.
Input
X– set
Output
A set representing the reflection $-X$.
LazySets.API.reflect — Method
Extended help
reflect(Z::AbstractZonotope)Algorithm
If $Z$ has center $c$ and generator matrix $G$, then $-Z$ has center $-c$ and generator matrix $G$. For the latter, observe that $G$ and $-G$ behave the same way.
LazySets.remove_redundant_generators — Method
remove_redundant_generators(Z::AbstractZonotope)Remove all redundant (pairwise linearly dependent) generators of a zonotopic set.
Input
Z– zonotopic set
Output
A new zonotope with fewer generators, or the same zonotopic set if no generator could be removed.
Algorithm
By default this implementation returns the input zonotopic set. Subtypes of AbstractZonotope whose generators can be removed have to define a new method.
LazySets.togrep — Method
togrep(Z::AbstractZonotope)Return a generator representation of a zonotopic set.
Input
Z– zonotopic set
Output
The same set in generator representation. This fallback implementation returns a Zonotope; however, more specific implementations may return other generator representations.
LazySets.API.vertices_list — Method
vertices_list(X::LazySet)Compute a list of vertices of a polytopic set.
Input
X– polytopic set
Output
A list of the vertices of X.
LazySets.API.vertices_list — Method
Extended help
vertices_list(Z::AbstractZonotope; [apply_convex_hull]::Bool=true)Input
apply_convex_hull– (optional, default:true) iftrue, post-process the computation with the convex hull of the points
Algorithm
Two-dimensional case
We use a trick to speed up enumerating vertices of 2-dimensional zonotopic sets with all generators in the first quadrant or third quadrant (same sign). Namely, sort the generators by angle and add them clockwise in increasing order and counterclockwise in decreasing order. A more detailed explanation can be found here.
To avoid the cumulative sum from both directions separately, we build a 2D index matrix to sum generators for both directions in one matrix-vector product.
General case
If the zonotopic set has $p$ generators, each vertex is the result of summing the center with some linear combination of generators, where the combination factors are $ξ_i ∈ \{-1, 1\}$.
There are at most $2^p$ distinct vertices. Use the flag apply_convex_hull to control whether a convex-hull algorithm is applied to the vertices computed by this method; otherwise, redundant vertices may be present.
Base.in — Method
Extended help
in(x::AbstractVector, Z::AbstractZonotope; solver=nothing)Input
solver– (optional, default:nothing) the backend used to solve the linear program
Examples
julia> Z = Zonotope([1.0, 0.0], [0.1 0.0; 0.0 0.1]);
julia> [1.0, 0.2] ∈ Z
false
julia> [1.0, 0.1] ∈ Z
trueNotes
If solver == nothing, we fall back to default_lp_solver(N).
Algorithm
The membership problem is reduced to the following linear program. Let $p$ and $n$ be the number of generators and ambient dimension, respectively. We consider the $p$-dimensional space of elements $(ξ_1, …, ξ_p)$ constrained to $ξ_i ∈ [-1, 1]$ for all $i = 1, …, p$ such that $x-c = Gξ$ holds.
LazySets.API.linear_map — Method
linear_map(M::AbstractMatrix, X::LazySet)Compute the linear map $M · X$.
Input
M– matrixX– set
Output
A set representing the linear map $M · X$.
LazySets.API.linear_map — Method
Extended help
linear_map(M::AbstractMatrix, Z::AbstractZonotope)Output
A Zonotope.
Algorithm
We apply the linear map to the center and the generators.
If the map has output dimension 1, a specialized algorithm ensures that the resulting zonotope only has a single generator (or none if the map is zero).
LazySets.reduce_order — Function
reduce_order(Z::AbstractZonotope, r::Real,
[method]::AbstractReductionMethod=GIR05())Reduce the order of a zonotopic set by overapproximating with a zonotope with fewer generators.
Input
Z– zonotopic setr– desired ordermethod– (optional, default:GIR05()) the reduction method used
Output
A new zonotope with fewer generators, if possible.
Algorithm
The available algorithms are:
julia> subtypes(AbstractReductionMethod)
4-element Vector{Any}:
LazySets.ASB10
LazySets.COMB03
LazySets.GIR05
LazySets.SRMB16See the documentation of each algorithm for references. Most methods split the given zonotopic set Z into two zonotopes, K and L, where K contains the most "representative" generators and L contains the generators that are reduced, Lred, using a box overapproximation. This methodology varies slightly for SRMB16. We follow the notation from Yang and Scott [YS18]. See also Kopetzki et al. [KSA17].
Base.split — Method
split(Z::AbstractZonotope, j::Int)Return two zonotopes obtained by splitting the given zonotopic set.
Input
Z– zonotopic setj– index of the generator to be split
Output
The zonotope obtained by splitting Z into two zonotopes such that their union is Z and their intersection is possibly non-empty.
Algorithm
This function implements Althoff et al. [ASB08], Prop. 3, which we state next. The zonotopic set $Z = ⟨c, g^{(1, …, p)}⟩$ is split into:
\[Z₁ = ⟨c - \frac{1}{2}g^{(j)}, (g^{(1, …,j-1)}, \frac{1}{2}g^{(j)}, g^{(j+1, …, p)})⟩ \\ Z₂ = ⟨c + \frac{1}{2}g^{(j)}, (g^{(1, …,j-1)}, \frac{1}{2}g^{(j)}, g^{(j+1, …, p)})⟩,\]
such that $Z₁ ∪ Z₂ = Z$ and $Z₁ ∩ Z₂ = Z^*$, where
\[Z^* = ⟨c, (g^{(1,…,j-1)}, g^{(j+1,…, p)})⟩.\]
Base.split — Method
split(Z::AbstractZonotope, gens::AbstractVector{Int},
nparts::AbstractVector{Int})Split a zonotopic set along the given generators into a vector of zonotopes.
Input
Z– zonotopic setgens– vector of indices of the generators to be splitn– vector of integers describing the number of partitions in the corresponding generator
Output
The zonotopes obtained by splitting Z into 2^{n_i} zonotopes for each generator i such that their union is Z and their intersection is possibly non-empty.
Examples
Splitting of a two-dimensional zonotopic set along its first generator:
julia> Z = Zonotope([1.0, 0.0], [0.1 0.0; 0.0 0.1])
Zonotope{Float64, Vector{Float64}, Matrix{Float64}}([1.0, 0.0], [0.1 0.0; 0.0 0.1])
julia> split(Z, [1], [1])
2-element Vector{Zonotope{Float64, Vector{Float64}, Matrix{Float64}}}:
Zonotope{Float64, Vector{Float64}, Matrix{Float64}}([0.95, 0.0], [0.05 0.0; 0.0 0.1])
Zonotope{Float64, Vector{Float64}, Matrix{Float64}}([1.05, 0.0], [0.05 0.0; 0.0 0.1])Here, the first vector in the arguments corresponds to the zonotopic set's generator to be split, and the second vector corresponds to the exponent of 2^n parts that the set will be split into along the corresponding generator.
As an example, below we split a two-dimensional zonotope along both of its generators, each time into four parts.
julia> Z = Zonotope([1.0, 0.0], [0.1 0.0; 0.0 0.1])
Zonotope{Float64, Vector{Float64}, Matrix{Float64}}([1.0, 0.0], [0.1 0.0; 0.0 0.1])
julia> split(Z, [1, 2], [2, 2])
16-element Vector{Zonotope{Float64, Vector{Float64}, Matrix{Float64}}}:
Zonotope{Float64, Vector{Float64}, Matrix{Float64}}([0.925, -0.075], [0.025 0.0; 0.0 0.025])
Zonotope{Float64, Vector{Float64}, Matrix{Float64}}([0.925, -0.025], [0.025 0.0; 0.0 0.025])
Zonotope{Float64, Vector{Float64}, Matrix{Float64}}([0.925, 0.025], [0.025 0.0; 0.0 0.025])
Zonotope{Float64, Vector{Float64}, Matrix{Float64}}([0.925, 0.075], [0.025 0.0; 0.0 0.025])
Zonotope{Float64, Vector{Float64}, Matrix{Float64}}([0.975, -0.075], [0.025 0.0; 0.0 0.025])
Zonotope{Float64, Vector{Float64}, Matrix{Float64}}([0.975, -0.025], [0.025 0.0; 0.0 0.025])
Zonotope{Float64, Vector{Float64}, Matrix{Float64}}([0.975, 0.025], [0.025 0.0; 0.0 0.025])
Zonotope{Float64, Vector{Float64}, Matrix{Float64}}([0.975, 0.075], [0.025 0.0; 0.0 0.025])
Zonotope{Float64, Vector{Float64}, Matrix{Float64}}([1.025, -0.075], [0.025 0.0; 0.0 0.025])
Zonotope{Float64, Vector{Float64}, Matrix{Float64}}([1.025, -0.025], [0.025 0.0; 0.0 0.025])
Zonotope{Float64, Vector{Float64}, Matrix{Float64}}([1.025, 0.025], [0.025 0.0; 0.0 0.025])
Zonotope{Float64, Vector{Float64}, Matrix{Float64}}([1.025, 0.075], [0.025 0.0; 0.0 0.025])
Zonotope{Float64, Vector{Float64}, Matrix{Float64}}([1.075, -0.075], [0.025 0.0; 0.0 0.025])
Zonotope{Float64, Vector{Float64}, Matrix{Float64}}([1.075, -0.025], [0.025 0.0; 0.0 0.025])
Zonotope{Float64, Vector{Float64}, Matrix{Float64}}([1.075, 0.025], [0.025 0.0; 0.0 0.025])
Zonotope{Float64, Vector{Float64}, Matrix{Float64}}([1.075, 0.075], [0.025 0.0; 0.0 0.025])LazySets.API.ρ — Method
ρ(d::AbstractVector, X::LazySet)Evaluate the support function of a set in a given direction.
Input
d– directionX– set
Output
The evaluation of the support function of X in direction d.
Notes
The convenience alias support_function is also available.
We have the following identity based on the support vector $σ$:
\[ ρ(d, X) = d ⋅ σ(d, X)\]
LazySets.API.ρ — Method
Extended help
ρ(d::AbstractVector, Z::AbstractZonotope)Algorithm
The support value is $cᵀ d + ‖Gᵀ d‖₁$, where $c$ is the center and $G$ is the generator matrix of Z.
LazySets.API.σ — Method
σ(d::AbstractVector, X::LazySet)Compute a support vector of a set in a given direction.
Input
d– directionX– set
Output
A support vector of X in direction d.
Notes
The convenience alias support_vector is also available.
LazySets.API.σ — Method
Extended help
σ(d::AbstractVector, Z::AbstractZonotope)Notes
If the direction has norm zero, the vertex with $ξ_i = 1 \ \ ∀ i = 1,…, p$ is returned.
Base.isdisjoint — Method
isdisjoint(X::LazySet, Y::LazySet, [witness]::Bool=false)Check whether two sets are disjoint (i.e., do not intersect), and optionally compute a witness.
Input
X– setY– setwitness– (optional, default:false) compute a witness if activated
Output
- If the
witnessoption is deactivated:trueiff $X ∩ Y = ∅$ - If the
witnessoption is activated:(true, [])iff $X ∩ Y = ∅$(false, v)iff $X ∩ Y ≠ ∅$ for some $v ∈ X ∩ Y$
Notes
The convenience alias is_intersection_empty is also available.
Base.isdisjoint — Function
Extended help
isdisjoint(Z1::AbstractZonotope, Z2::AbstractZonotope,
[witness]::Bool=false; [solver]=nothing)Input
solver– (optional, default:nothing) the backend used to solve the linear program
Algorithm
The algorithm is taken from Guibas et al. [GNZ03].
$Z1 ∩ Z2 = ∅$ iff $c_1 - c_2 ∉ Z(0, [g_1, g_2])$, where $c_i$ and $g_i$ are the center and generators of zonotope Zi and $Z(c, g)$ represents the zonotope with center $c$ and generators $g$.
LazySets.API.minkowski_difference — Method
minkowski_difference(X::LazySet, Y::LazySet)Compute the Minkowski difference of two sets.
Input
X– setY– set
Output
A set representing the Minkowski difference $X ⊖ Y$.
Notes
The Minkowski difference of two sets $X$ and $Y$ is defined as
\[ X ⊖ Y = \{z \mid \{z\} ⊕ Y ⊆ X\}\]
The convenience alias pontryagin_difference is also available.
There is some inconsistency in the literature regarding the naming conventions. In this library, both Minkowski difference and Pontryagin difference refer to the geometric difference of two sets.
LazySets.API.minkowski_difference — Method
Extended help
minkowski_difference(Z1::AbstractZonotope, Z2::AbstractZonotope)Output
An HPolytope.
Algorithm
For one-dimensional sets, this method implements a simple algorithm for intervals. For two-dimensional sets, this method implements Althoff [Alt15], Proposition 6. For higher-dimensional sets, this method implements Althoff [Alt15], Theorem 3.
LazySets.API.minkowski_sum — Method
minkowski_sum(X::LazySet, Y::LazySet)Compute the Minkowski sum of two sets.
Input
X– setY– set
Output
A set representing the Minkowski sum $X ⊕ Y$.
Notes
The Minkowski sum of two sets $X$ and $Y$ is defined as
\[ X ⊕ Y = \{x + y \mid x ∈ X, y ∈ Y\}.\]
LazySets.API.minkowski_sum — Method
Extended help
minkowski_sum(Z1::AbstractZonotope, Z2::AbstractZonotope)Algorithm
The resulting zonotope is obtained by summing up the centers and concatenating the generators of Z1 and Z2.
LinearAlgebra.norm — Function
norm(X::LazySet, [p]::Real=Inf)Return the norm of a set.
Input
X– setp– (optional, default:Inf) norm
Output
A real number representing the norm.
Notes
The norm of a set is the norm of the enclosing ball (of the given $p$-norm) of minimal volume that is centered in the origin.
LinearAlgebra.norm — Function
norm(Z::AbstractZonotope, p::Real=Inf)Compute the $ℓ_p$ norm of a zonotope.
Undocumented implementations:
Inherited from LazySet:
areachebyshev_center_radiuscomplementconcretizeconstraintsconvex_hullcopy(::Type{LazySet})diametereltypeeltypeisoperationispolytopicpolyhedronradiusrationalizerectifysingleton_listtosimplehreptriangulatetriangulate_facesverticesaffine_mapexponential_mapis_interior_pointsamplescaletranslateconvex_hullexact_sumisapprox==isequivalent⊂
Inherited from ConvexSet:
Inherited from AbstractPolyhedron:
Inherited from AbstractPolytope:
Inherited from AbstractCentrallySymmetricPolytope:
Internal methods
LazySets.generators_fallback — Method
generators_fallback(Z::AbstractZonotope)Fallback definition of generators for zonotopic sets.
Input
Z– zonotopic set
Output
An iterator over the generators of Z.
LazySets.genmat_fallback — Method
genmat_fallback(Z::AbstractZonotope; [gens]=generators(Z), [ngens]=nothing)Fallback definition of genmat for zonotopic sets.
Input
Z– zonotopic setgens– (optional; default:generators(Z)) iterator over generatorsngens– (optional; default:nothing) number of generators ornothingif unknown
Output
A matrix where each column represents one generator of Z.
Notes
Passing the number of generators (ngens) is more efficient, since otherwise the generators have to be obtained from the iterator (gens) and stored in an intermediate vector until the final result matrix can be allocated.
LazySets._l1_norm — Method
_l1_norm(Z::AbstractZonotope)Compute the exact $ℓ₁$ norm of a zonotope with generator matrix $G ∈ \mathbb{R}^{d×n}$
Notes
The function exploits the fact that the mapping $ξ ↦ ‖ c + ∑_{i=1}^n ξ_i g_i ‖_1$ is a convex function of the coefficients $ξ_i$. As a result, its maximum over the hypercube $[-1,1]^n$ is attained at one of the $2^n$ corners.
This algorithm has time complexity $\mathcal{O}(2ⁿ · d)$, and thus is only practical for zonotopes with a small number of generators.
Order-reduction methods
LazySets.AbstractReductionMethod — Type
AbstractReductionMethodAbstract supertype for order-reduction methods of a zonotopic set.
LazySets.ASB10 — Type
ASB10 <: AbstractReductionMethodZonotope order-reduction method from Althoff et al. [ASB10].
LazySets.COMB03 — Type
COMB03 <: AbstractReductionMethodZonotope order-reduction method from Combastel [Com03].
LazySets.GIR05 — Type
GIR05 <: AbstractReductionMethodZonotope order-reduction method from Girard [Gir05].
LazySets.SRMB16 — Type
SRMB16 <: AbstractReductionMethodZonotope order-reduction method from Scott et al. [SRMB16].
Fields
ϵ– (optional; default:1e-6) pivot thresholdδ– (optional; default:1e-3) volume threshold
Notes
The method reorders the generator matrix using reduced row echelon form (rref) to the form $[T ~ V]$, then iteratively removes one generator from $V$ while updating $T$.