Bibliography
- [Alt15]
- M. Althoff. On Computing the Minkowski Difference of Zonotopes. CoRR abs/1512.02794 (2015), arXiv:1512.02794.
- [Alt13]
- M. Althoff. Reachability analysis of nonlinear systems using conservative polynomialization and non-convex sets. In: Hybrid Systems: Computation and Control (HSCC), edited by C. Belta and F. Ivancic (ACM, 2013); pp. 173–182.
- [AK12]
- M. Althoff and B. H. Krogh. Avoiding geometric intersection operations in reachability analysis of hybrid systems. In: Hybrid Systems: Computation and Control (HSCC), edited by T. Dang and I. M. Mitchell (ACM, 2012); pp. 45–54.
- [ASB08]
- M. Althoff, O. Stursberg and M. Buss. Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization. In: Conference on Decision and Control (CDC) (IEEE, 2008); pp. 4042–4048.
- [ASB10]
- M. Althoff, O. Stursberg and M. Buss. Computing reachable sets of hybrid systems using a combination of zonotopes and polytopes. Nonlinear Analysis: Hybrid Systems 4, 233–249 (2010).
- [BD17]
- S. Bak and P. S. Duggirala. Simulation-Equivalent Reachability of Large Linear Systems with Inputs. In: Computer Aided Verification (CAV), Vol. 10426 of LNCS, edited by R. Majumdar and V. Kuncak (Springer, 2017); pp. 401–420.
- [Beh19]
- M. Behroozi. Largest Inscribed Rectangles in Geometric Convex Sets. CoRR abs/1905.13246 (2019), arXiv:1905.13246.
- [Com03]
- C. Combastel. A state bounding observer based on zonotopes. In: European Control Conference (ECC) (IEEE, 2003); pp. 2589–2594.
- [DDP17]
- T. Dreossi, T. Dang and C. Piazza. Reachability computation for polynomial dynamical systems. Formal Methods in System Design 50, 1–38 (2017).
- [DDP16]
- T. Dreossi, T. Dang and C. Piazza. Parallelotope Bundles for Polynomial Reachability. In: Hybrid Systems: Computation and Control (HSCC), edited by A. Abate and G. Fainekos (ACM, 2016); pp. 297–306.
- [DV16]
- P. S. Duggirala and M. Viswanathan. Parsimonious, Simulation Based Verification of Linear Systems. In: Computer Aided Verification (CAV), Vol. 9779 of LNCS, edited by S. Chaudhuri and A. Farzan (Springer, 2016); pp. 477–494.
- [FGD+11]
- G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang and O. Maler. SpaceEx: Scalable Verification of Hybrid Systems. In: Computer Aided Verification (CAV), Vol. 6806 of LNCS, edited by G. Gopalakrishnan and S. Qadeer (Springer, 2011); pp. 379–395.
- [FR12]
- G. Frehse and R. Ray. Flowpipe-Guard Intersection for Reachability Computations with Support Functions. In: Analysis and Design of Hybrid Systems (ADHS), Vol. 45 no. 9 of IFAC Proceedings Volumes, edited by M. Heemels and B. D. Schutter (Elsevier, 2012); pp. 94–101.
- [GGP09]
- K. Ghorbal, E. Goubault and S. Putot. The Zonotope Abstract Domain Taylor1+. In: Computer Aided Verification (CAV), Vol. 5643 of LNCS, edited by A. Bouajjani and O. Maler (Springer, 2009); pp. 627–633.
- [Gir05]
- A. Girard. Reachability of Uncertain Linear Systems Using Zonotopes. In: Hybrid Systems: Computation and Control (HSCC), Vol. 3414 of LNCS, edited by M. Morari and L. Thiele (Springer, 2005); pp. 291–305.
- [Gol90]
- R. Goldman. Intersection of Two Lines in Three-Space. In: Graphics Gems, edited by A. S. Glassner (Academic Press, 1990); pp. 304–304.
- [Gue09]
- C. L. Guernic. Reachability Analysis of Hybrid Systems with Linear Continuous Dynamics. Ph.D. Thesis, Joseph Fourier University, Grenoble, France (2009).
- [GNZ03]
- L. J. Guibas, A. T. Nguyen and L. Zhang. Zonotopes as bounding volumes. In: Symposium on Discrete Algorithms (SODA) (ACM/SIAM, 2003); pp. 803–812.
- [Kam96]
- G. K. Kamenev. An algorithm for approximating polyhedra. Computational Mathematics and Mathematical Physics 36, 533–544 (1996).
- [Koc22]
- N. Kochdumper. Extensions of Polynomial Zonotopes and their Application to Verification of Cyber-Physical Systems. Ph.D. Thesis, Technical University of Munich, Germany (2022).
- [KA21]
- N. Kochdumper and M. Althoff. Sparse Polynomial Zonotopes: A Novel Set Representation for Reachability Analysis. Transactions on Automatic Control 66, 4043–4058 (2021).
- [KG98]
- I. Kolmanovsky and E. G. Gilbert. Theory and computation of disturbance invariant sets for discrete-time linear systems. Mathematical Problems in Engineering 4, 317–367 (1998).
- [KSA17]
- A.-K. Kopetzki, B. Schürmann and M. Althoff. Methods for order reduction of zonotopes. In: Conference on Decision and Control (CDC) (IEEE, 2017); pp. 5626–5633.
- [Kva05]
- M. Kvasnica. Minkowski addition of convex polytopes (2005).
- [LP08]
- A. V. Lotov and A. I. Pospelov. The modified method of refined bounds for polyhedral approximation of convex polytopes. Computational Mathematics and Mathematical Physics 48, 933–941 (2008).
- [Man94]
- O. L. Mangasarian. Nonlinear programming (SIAM, 1994).
- [MRTC14]
- M. Maı̈ga, N. Ramdani, L. Travé-Massuyès and C. Combastel. A CSP Versus a Zonotope-Based Method for Solving Guard Set Intersection in Nonlinear Hybrid Reachability. Mathematics in Computer Science 8, 407–423 (2014).
- [MBB19]
- I. M. Mitchell, J. Budzis and A. Bolyachevets. Invariant, viability and discriminating kernel under-approximation via zonotope scaling: poster abstract. In: Hybrid Systems: Computation and Control (HSCC), edited by N. Ozay and P. Prabhakar (ACM, 2019); pp. 268–269.
- [Mul59]
- [O’R98]
- J. O’Rourke. Computational geometry in C (Cambridge University Press, 1998).
- [RW98]
- R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Vol. 317 of Grundlehren der mathematischen Wissenschaften (Springer, 1998).
- [Rub81]
- D. B. Rubin. The Bayesian bootstrap. The annals of statistics, 130–134 (1981).
- [SGM+18]
- G. Singh, T. Gehr, M. Mirman, M. Püschel and M. T. Vechev. Fast and Effective Robustness Certification. In: Advances in Neural Information Processing Systems (NeurIPS), edited by S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi and R. Garnett (2018); pp. 10825–10836.
- [Val95]
- [WKBA23]
- M. Wetzlinger, N. Kochdumper, S. Bak and M. Althoff. Fully Automated Verification of Linear Systems Using Inner and Outer Approximations of Reachable Sets. Transactions on Automatic Control 68, 7771–7786 (2023).
- [YS18]
- X. Yang and J. K. Scott. A comparison of zonotope order reduction techniques. Automatica 95, 378–384 (2018).