Introduction
Bernstein Expansion
Consider a polynomial in $n$ variables, $x_1, \ldots, x_n$ expressed in its power form,
\[ p(x) = \\sum_{i=0}^l a_i x^i,\qquad x = (x_1, \ldots, x_n),\]
where we use the multi-index notation. The degree of $p$ is $l = (l_1, \ldots, l_n)$, $0 ≤ l_i < \infty$ for all $i = 1, \ldots, n$.
Box
\[X = [\bar{x}_1, \overline{x}_1]\]
Example
using BernsteinExpansions, DynamicPolynomials
@polyvar x
univariate(x^3, 3, 1..2)
4-element Vector{Float64}:
1.0
2.0
4.0
8.0
univariate(2x^3, 3, 1..2)
4-element Vector{Float64}:
2.0
4.0
8.0
16.0